如图光滑水平直轨道上有一个质量为m的小车,车上表面水平且光滑,车上装有半径

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/08 10:50:10
高一物理题水平直轨道上运动的货车车厢内有一个倾角为37°的光滑斜面,斜面上有一个质量为0.5kg的小球,用轻绳系于斜面的

两种情况吧,一个是斜面所对方向为火车运动方向另斜面所对方向与火车运动方向相反F=ma算出加速度对小球的力的大小(1)小球受到斜面的支持力,绳子的拉力,还有火车给它的向右的一个力,还有它自身重力,画个图

动能定理的应用半径R=20cm的竖直放置的圆轨道与水平直轨道相连接,如图.质量m=50g的小球A以一定的初速度由直轨道向

在轨道最高点时,重力加上N作为向心力:mg+N=mv^2/r,即1=0.05*V^2/0.2,v=2m/s重力做负功:-mgh=-0.05*10*2*0.2=-0.2J设阻力做功W所以根据动能定理:-

如图所示,光滑的水平轨道与光滑半圆轨道相切,圆轨道半径R=0.4m一个小球停放在水平光滑轨道上,

1、有能量守恒定律mV0^2/2=mg*2R+mV^2/2,可得到飞出时的速度为V1=3m/s.2、假设C点时,轨道作用力是小球重力的n倍,则有向心力可得到mV^2/R=mgn+mg,可得n=1.25

光滑的水平轨道与光滑半圆轨道相切,圆轨道半径0.4m.一个小球停放在水平轨道上,现给小球一个v0=

(1)1/2mV0^2=1/2mVc^2+2mgRVc^2=V0^2-4gR=5^2-4*10*0.4=9Vc=3(m/s)(2)F向=mVc^2/R=m*3^2/0.4=22.5m对轨道压力:N=F

水平直轨道上运动的火车车厢内有一个倾角为37度的光滑斜面,鞋面上有一个质量为m=0.5kg的小球,用轻绳系于鞋面的顶端,

给好评再问:你这和我问的是一道题吗再答:对的再答:再答:参考黄色部分再问:谢谢知道了再答:采纳以下好吗再问:你不一直追着要好评我也会给的。。

在水平直轨道上运动的火车车厢内有一个倾角为30°的斜面,如图所示,小球质量为m,当火车向右运动时,求:(1)当加速度的大

因为加速度始终是水平方向的,所以采用所有受力正交分解.小球受重力G,斜面对其支撑力F,和拉力T.【注意】受力分析图始终只是这一个.但是要有概念:除了重力不会变化外,支撑力和拉力都是随着条件的变化而变化

(2009•石景山区二模)(1)某同学设计了一个测量物体质量的装置,如图1所示,其中P是光滑水平轨道,A是质量为M的带夹

(1)根据弹簧振子做简谐运动的周期公式:m=kT24π2从公式中可以看出,物体的质量与振子的震动周期有关,故需要测量它的振动周期.测量方法及所需测量的物理量:A、不放Q时用秒表测出振子振动20次(或5

如图,一质量为M的木板B静止在光滑水平面上,其右端上表面紧靠(但不粘连)在固定斜面轨道的底端(斜面底端是一小段光滑的圆弧

物体沿斜面下滑加速度a=g(sin37-μcos37)=4所以下滑到斜面末端速度v1,2aL=v1^2v1=8m/s设后来共同速度为v2,A与B的质量比m:M=k,A与B共同运动时间为t.A减速v2=

一道疑惑的物理题如图,光滑圆弧轨道与水平轨道平滑相连.在水平轨道上有一轻质弹簧,右端固定在墙M上,左端连接一个质量为2m

我想知道第2问A与B在D点为什么要交换速度,而不是用动量守恒计算?这个问题很好理解的.你分别用能量守恒和动量守恒2个公式写出来就可以推导出来.这个是个定理.实在不行你可以联系生活理解啊.我一说你就明白

如图所示,一个小球质量为m,静止在光滑的轨道上,现以水平力击打小球,使小球能够通过半径为R的竖直光滑轨道的最高点C,则水

小球恰好到达最高点C时,做功最少,小球恰好达到最高点C,重力提供向心力,由牛顿第二定律得:mg=mv2CR,解得:vC=gR,从小球静止到小球运动到最高点过程中,由动能定理得:W-mg•2R=12mv

如图ab是竖直四分之一圆弧形光滑轨道,在下端B与水平直轨道相切.一小物块自A点起由静止开始沿轨道下滑

(1)mgr=mvB^2/2VB^2=2gr=2X10X0.2=4VB=2m/sFB-mg=mVB^2/rFB=3mg=3X0.1X10=3N(2)a=-umg/m=-ug=-0.5X10=-5m/s

有光滑圆弧轨道的小车总质量为M,静止在光滑水平地面上,轨道足够长,下端水平,有一质量为m的小球以水平初速度v0滚上小车

水平方向没有其他力作用,所以合外力为0,合外冲量为0,动量守恒.竖直方向有重力和支持力这两个外力,它们合力不为0,所以和外冲量不为0,动量不守恒.小球在最大高度时相对小车静止,即两者速度相等.再问:为

光滑的水平轨道与光滑的半圆轨道相切,圆轨道半径R=0.4m.一个小球停放在水平轨道上,现给小球

从题目看,圆轨道是在竖直平面内的吧.(1)假设小球能从最低点到轨道最高点,由机械能守恒,得0.5*m*V0^2=0.5*m*V^2+m*g*(2R)即0.5*V0^2=0.5*V^2+g*(2R)0.

如图所示,A为有光滑曲面的固定轨道,轨道底端的切线方向是水平的.质量M=40kg的小车B静止于轨道右侧,其上表面与轨道底

(1)下滑过程机械能守恒,有:mgh+12mv 21=0+12mv 22代入数据得:v2=6m/s;设初速度方向为正方向,物体相对于小车板面滑动过程动量守恒为:mv2=(m+M)v

如图所示,质量为M的物体静止于光滑水平面上,其上有一个半径为R的光滑半球形凹面轨道,今把质量为m的小球自轨道右测与球心等

根据动量守恒,任意时刻mv=MV均成立,所以v平均*m=V平均*M,又因为(v平均+V平均)t=2R,所以M运动的最大距离是(m/(M+m))*2R.再问:滑块的【最大】位移是什么时候呢?还有(v平均

半径R=20cm的竖直放置的圆轨道与水平直轨道相连接,如图.质量m=50g的小球A以一定的初速度由直轨道向左运动,并沿圆

没图,不好回答啊,不过我猜一下,假如那个N点是圆心等高点的话,那是这样答:1.重力做功只与位置有关,W=mgh=0.05kg*10m/s²*0.2m=0.1J2.根据力学平衡条件可得mg+F

如图所示,在水平光滑轨道PQ上有一个轻弹簧其左端固定,现用一质量m=2.0kg的小物块(视为质点)将弹簧压缩后释放,物块

(1)物体进入轨道后恰好沿轨道运动:mg=mv2R…①弹簧具有弹性势能:Ep=12mv2=5J…②(2)物块由顶端滑到底端过程由机械能守恒:mg2R=12mv22−12mv21…③解得:v2=5m/s

在光滑水平面上有一个质量为M=2kg的小车B处于静止状态,小车上表面有一段长度L=1m的直线轨道

你的②错了1/2mv^2=1/2MVm^2-1/2mv^2-umgL②应该是初动能=小车动能+A的动能+克服摩擦力所做的功这才是能量守衡定律1/2mv^2=1/2MVm^2+1/2mv^2+umgL把