如图四边行abcd内接与圆o,bd是远o

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:59:08
如图,正方形ABCD绕点A逆时针旋转n°后得到正方形AEFG,EF与CD交于点O.若正方形的边长为2cm,重叠部分(四边

连接AO,∵在Rt△ADO与Rt△AEO中,AD=AEAO=AO,∴Rt△ADO≌Rt△AEO(HL),∵四边形AEOD的面积为433,∴△ADO的面积=12AD×DO=233,∵AD=2,∴DO=2

几何图形变换练习2、如图,O在长方形ABCD内,问是否存在一个四边形,使它的四边长分别等于AO、BO、CO、DO的长,并

存在过O点做EF平行AD,交AB于E,交CD于F达O点做GH平行AB,交AD于G,交BC于H连接EGFH即为所求

如图,四边形ABCD内接于圆O,DA与CB的延长线相交于点P,且AD=CB,求证:AB‖CD.

∵四边形ABCD内接于圆O∴∠DCB+∠DAB=180°又∠PAD+∠DAB=180°∴∠PAD=∠DCB①∵DP//CA∴∠APD=∠BAC②又∠BAC=∠CDB③(等弧所对相等)由②③可得∠APD

如图,梯形ABCD内接于圆O,AD平行BC,过B引圆O的切线分别交DA,CA的延长线于E、F

第一个问题:∵BF切⊙O于B,∴∠ABE=∠BCA.∵AD∥BC,∴EA∥BC,∴∠BAE=∠ABC.由∠ABE=∠BCA、∠BAE=∠ABC,得:△ABE∽△BCA,∴AE/AB=AB/BC,∴AB

如图 内接于圆O的四边形ABCD的对角线AC与BD垂直相交于点K 设圆O 的半径为R 求证AK^2+BK^2+CK^2+

设圆心O到AC的距离为a圆心O到BD的距离为b则AK=√(R^2-a^2)+bCK=√(R^2-a^2)-bBK=√(R^2-b^2)+aDK=√(R^2-b^2)-aAK²+BK²

如图,四边形ABCD内接于圆o,BC是圆o的直径,AE垂直CD,垂足为E,DA平分角BDE.

你题没发完再问:再问:第2题再答:第一问可以求出90度第二问cd=ad圆里面两个都是直角三角行全等睡觉了拿手机在玩帮你看的没笔希望你弄得懂再问:恩,谢谢了

如图矩形ABCD内接于圆O,AD平行于BC,过B引圆O的切线分别交DA,CA的延长线于E,F.

(1)证明:因为BE为圆的切线,所以∠ABE=∠ACB,所以Rt△EAB∽Rt△BAC,所以AB/AE=BC/AB,所以AB的平方=AE乘BC(2)由勾股定理得:AC=√89由(1)知AB/AE=BC

如图,ABCD是⊙O内接四边形∠ABD=∠CBD=60°,AC与BD交于E点

△ACD为等边三角形证明∠ACD=∠CBD=60°∠CAD=∠ABD=60°∠ADC=180°-60°-60°=60°所以△ACD为等边三角形过C点,作BD边上的高,CH容易求得∠BCD=60+15=

如图,已知矩形ABCD内接于圆O,圆O的半径为4,AB=4,将矩形ABCD绕点O逆时针旋转.

因为A,B,C,D四点共圆且矩形的对角线相等并且互相平分,即OA=OB=OC=OD,无论怎么绕着O点旋转,结果仍然四点在圆上且为矩形,形状大小都不变.因为0A=0B=AB=4,由勾股定理求出AD=BC

已知 如图 正方形ABCD内接于圆O EF分别为DA DC中点 过EF作弦MN 若圆O的半径为12求

如图,EF是⊿ACD的中位线,OP=OD/2=6. MN=2PM=2√(12²-6²)=12√3.PB=18.MB=NB=√[18²+(

如图,四边形ABCD是圆O的内接四边形,AC为直径,弧BD=弧AD,DE垂直于BC,垂足为E. (1)判断直线ED与圆O

解题思路:本题考察了切线的判定方法,及已知特殊线段的长度,得到三角形ODC是等边三角形,再结合扇形面积公式,等边三角形面积公式,求得阴影部分面积。解题过程:

已知 如图 正方形ABCD内接于圆O EF分别为DA DC中点 过EF作弦MN 若圆O的半径为12

连结OE、OF可得四边形OEDF为正方形,连结OD交EF于G,则OG=1/2OD=6.连结OM,在Rt△OGM中,OM=12,OG=6,由勾股定理得MG=6倍根号下3,再由垂径定理可求得MN=2MG=

如图,过平行四边形ABCD对角线的交点o作两条互相垂直的直线EF,GH,分别与平行四边形ABCD的四边交于E,F,G,H

E在AD上,F在BC上,G在AB上,H在CD上因为ABCD是平行四边形所以OD=OB,角ODE=角OBE,因为EF与BD相交,所以角BOF=角DOE所以三角形DOE全等于三角形BOF所以OE=OF同理

如图△ABC内接与圆o,AD垂直于bc于

角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8

如图,已知正方形ABCD的边长为1.若以A为圆心,1为半径作圆,在扇形ABD内作⊙o与AD、

过⊙o圆心作AB、AD垂线设⊙o的半径为x则x^2+x^2=(1-x)^2x^2+2x-1=0x=-1+根号2⊙o的周长=2π*(根号2-1)

如图,正方形ABCD内接于⊙O,⊙O的直径为 根号二分米,若在这个圆面上随意抛一粒豆子,则豆

1、此概率=正方形面积除以圆面面积2、正方形面积=AD*CD3、AD平方+CD平方=2分米的平方,所以AD=CD=根号2分米,所以AD*CD=根号2*根号2=2平方分米4、圆的面积=πR平方=π*1的

已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,对角线AC和BD的交点为P,AB=BD,且PC=0.6.求四边

设BC=X,CD=y,∵△APB∽△DPC,△APD∽△BPC∴AB∶CD=AD∶BC=AP∶PC=(3-0.6)∶0.6=4∶1∴AB=4CD=4y,AD=4BC=4x.作BE⊥AD,交AD于E点,

如图,已知四边形ABCD内接于直径为3的圆O

AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/