如图在△ABC中,∠C=80°,∠B=40°,AD⊥BC条件关系改为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:49:35
如图 在rt△abc中 ∠c 90,∠a=20°,AB=4,解直角三角形

∠b=70度,BC=4sin20度=1.368,AC=4cos20度=3.758

如图,在△ABC中,∠C=90°,∠ABD=2∠EBC,AD∥BC,

证明:取ED的中点O,连接AO,∵∠CAD=90°,∴OD=AO=OE,∴∠AOE=2∠D,∵AD∥BC,∴∠EBC=∠D,∴∠AOE=2∠EBC,∵∠ABD=2∠EBC,∴∠ABD=∠AOB,∴AB

如图,在△ABC中,AB=AC,∠C等于2∠A如图,在△ABC中,AB=AC,∠C等于2∠A,以AB为弦的圆O与BC切点

∵AB=AC∴∠ABC=∠C=2∠A∵∠ABC+∠A+∠C=180°∴5∠A=180°∠A=36°∠ABC=∠C=23A=72°∵BC是圆的切线∴∠CBD=∠B=36°∴∠ABD=∠ABC-∠CBD=

如图,在△ABC中,∠C=90°.(1)用圆规和直尺在AC上

(1)作线段AB的垂直平分线,与AC的交点就是点P(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB,∴∠A=

如图,在Rt△ABC中,∠C=90°.根据题回答

(1)tan角ABC=tan角ADC(2)2tan角ABC=tan角ADC(3)n角ABC=tan角ADC

如图,在△ABC中,∠A=80°,∠B=∠C,求∠C的度数

∠C=1/2(180°-∠A)=1/2(180°-80°)=50°.

如图.在△ABC中.BD平分∠ABC.

解;因为三角形的外角等于不相邻的两个内角之和,所以设∠ACB的外角为∠ACE,∠ACE=∠ABC+∠BAC.又因为BD平分∠ABC,所以∠DBC=1/2∠ABC同理:∠ACD=1/2∠ACE=1/2(

如图,在△ABC中,∠C=90度.

(1)(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB,∴∠A=∠ABP.∴∠A=∠ABP=∠PBC=13×

已知,如图,在△ABC中,∠C=90°.CD⊥AB,AE平分∠CAB.

由题意知:∠eab+∠cfe=90°∠cae+∠aec=90°∵∠cae=∠eab∴∠cef=∠cfe

如图,在△ABC中,点D在AC上,且AB=AD,∠ABC=∠c+30°,则∠CBD的度数为?

AB=AD∠ABD=∠ADB∠ABD+∠ADB+∠A=180°=>∠ABD=(180°-∠A)/2∠ABC=∠C+30°∠ABC+∠C+∠A=180°∠ABC+(∠ABC-30°)+∠A=180°=>

如图,在△ABC中,∠C=90°.(1)用圆规和直尺在AC上

1,画线段BC的中垂线PD,与AC的交点就是点P2.∵PD是BC的中垂线∴∠ADP=∠BDP=90°∵∠C=90°∴∠ADP=∠BDP=∠C∵PC=PDAP=PB∴RT⊿APD≌RT⊿BPD≌RT⊿B

如图,在△ABC中,∠ACB=90°,点E为AB中点,连接C

解题思路:要证明四边形ACEF是平行四边形,需求证CE∥AF,由已知易得△BEC,△AEF是等腰三角形,则∠1=∠2,∠3=∠F,又∠2=∠3,∴∠1=∠F,∴CE∥AF解题过程:答案见附件最终答案:

如图 在△ABC中,∠C=2∠B ,AD是△ABC的角平分线.

延长AC到E使得CE=CD,连接DE,用三角形全等

如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D

(1)作DE⊥AB于点E∵BC=8,BD=5∴CD=3∵AD平分∠BAC∴DE=DC=3即:D到AB的距离等于3(2)作DE⊥AB于点E∵AD平分∠BAC,DE=6∴CD=DE=6∵BD:DC=3:2

如图,在△ABC中,∠C=90°,DE垂直平分AB,交AC于

解题思路:本题是基础题,根据垂直平分线的性质及三角形内角和求解解题过程:解:设∠ABD=x°,∵∠ABD:∠ABC=1:2,∴∠ABC=2x°,∵DE是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD

如图,在△ABC中,∠C=90°,∠ABC=2∠EBC,AD∥BC,试说明DE=2AB

角AED=ABC证△ABC相似△DEA证∠ABE=∠EBC=∠BAE后面不写了算算就出来了

如图,在Rt△ABC中,角C=90°

过B作BE⊥AD交AD的延长线于E在直角△ACD中CD=6∠ADC=45求出AC=6AD=6倍根号2在直角△ACB中由∠B的正弦=3/5得AC:AB=3/5得AB=10由勾股定理得BC=8∴BD=8-

如图,在△ABC中,点D在AC上,且AB=AD,∠ABC=∠C+30°,则∠CBD等于(  )

∵AB=AD,∴∠ADB=∠ABD又∵∠ADB=∠CBD+∠C∴∠ABD=∠CBD+∠C∴∠ABC=∠CBD+∠C+∠CBD=∠C+30°即2∠CBD=30°解得∠CBD=15°.故选A.