如图在△ABC中点DE分别在BC AC上连接AD DE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:49:20
如图,在三角形abc中,bd,ce是高,gf分别是bc,de的中点,试说明fg垂直de

连结GE,GD⊥AC,GE⊥AB,所以∠BEC=∠BDC=90度GD因G是BC中点,利用直角三角形斜边中线等斜边一半,得GE=BC/2,GD=BC/2所以GE=GD又因F是ED中点,由等腰三角形底边中

如图,在△ABC中,D是AB的中点,E,F分别是AC,BC上的点,且DE⊥DF,求证:AE+BF>EF.

【这个辅助线是对的,只是不完整,再连接EF、E`F.】证明:延长ED至E`,使DE`=DE,连接BE`、EF、E`F.∵D为AB的中点∴AD=BD又∠BDE=∠ADE`(对等角相等)DE=DE`∴△A

几何好的来!如图,在△ABC中,∠C=90°,∠B=45°,D为AB边的中点,点E、F分别在AC、BC上,且DE⊥DF.

证明:连接CDAC=AB,D为中点CD⊥ABDE⊥DF∠EDC+∠CDF=90°∠BDF+∠CDF=90°∠EDC=∠BDFCD平分∠ACB∠ACD=∠BCD=45°在△CED,△BFD中∠EDC=∠

如图,已知在△ABC中,D是BC的中点,DE⊥AB ,DF⊥AC,垂足分别是E、F,且DE=DF,试说明△ABC是等腰三

要证明等腰只需要证明AC=AB就可以了连接ADD是BC中点所以DE=DFAD=DA从DE⊥ABDF⊥AC可以得∠AED=∠AFD=90°那么△ADE≌△ADF得出AE=AF再证明BE=CF(D是中点B

已知,如图,在△abc中,点d是bc的中点,de⊥ab,df⊥ac,垂足分别为e,f,且de=df,求证;△abc是等腰

证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C,∵D是BC的中点,∴BD=CD,∴△BED≌△CFD(AAS),∴BE=CF,同理,在Rt△AED和Rt△AF

如图 在△ABC中,AD⊥BC于点D 点E,F,G 分别是AC,AB,BC的中点 求证.FG=DE

证明:三角形ADC为直角三角形,且E为斜边上的中点,所以2ED=AC,F,G分别是AC,AB,BC的中点,所以2FG=AC,所以ED=FG

如图 在△ABC中,AD⊥BC于点D,点E,F,G分别是AC,AB,BC的中点,求证FG=DE.

因为F、G为中点,所以FG//AC,且FG=1/2AC.因为AD⊥BC,E为斜边AC的中点,所以DE=1/2AC.所以FG=DE.

如图,在△ABC中,AB=AC,∠B=90°,D、E分别为AB、BC上的动点,且BD=CE,M是AC的中点,试探究在DE

△DEM是等腰直角三角形.理由如下:连接BM,∵AB=AC,∠B=90°,M是AC的中点,∴BM⊥AC,∠DBM=45°,BM=CM=12AC,在△BDM和△CEM中,BM=CM∠DBM=∠C=45°

如图:在△ABC中,已知BD,CE分别是△ABC的AC,AB边上的高,F是DE的中点,G是BC的中点,请说明GF⊥DE的

证明:连接GD、GE.∵Rt△CBD中G为BC的中点,∴GD=½BC,∵Rt△CBE中G为BC的中点,∴GE=½BC,∴GD=GE,∵F是DE的中点,∴FG⊥DE.

如图,在△ABC中,D是BC的中点,DE‖AB,DF‖AC,DE,DF分别交AC,AB于点E,F求证:BF=DE,CE=

证明:∵D为BC边的中点,∴BD=CD,∵DE∥AB,DF∥AC,∴∠EDC=∠B,∠FDB=∠C,在△FDB和△ECD中,∠FDB=∠CDB=CD∠B=∠EDC∴△FDB≌△ECD(ASA);所以D

如图,△ABC中,∠C=90°,∠B=45°,D为AB中点,E,F分别在AC、BC上,且DE⊥DF.求证:AE^2+BF

解一:证明:以D为圆点,DB为半径,将DB边逆时针旋转180度,此时BD边和AD边重合B点和A点重合,记F点旋转到F'∴AF'=FB,DF=DF',∠ADF'=∠FDB∵D是AB边的中点,∴此时B点和

如图在△ABC中,AB=AC,BD,CE是△ABC的高,G,F分别是BC,DE的中点,试证明FG⊥DE

证明:连结EG、DG∵BD是AC边上的高,∴△BCD是RT△,又∵G是BC中点,∴DG=BC/2(直角三角形斜边中线等于斜边的一半)同理可得EG=BC/2,∴DG=EG,又∵F是DE中点,∴FG⊥DE

如图,在△ABC中,BE、CF分别是AC、AB边上的高,D是BC的中点,求证:DE=DF

因△ABC中,BE、CF分别是AC、AB边上的高,D是BC的中点,所以△BFC、△BEC为RT△,DE、DF分别为RT△BEC和RT△BFC公共斜边上的中线,所以DE=BC/2,DF=BC/2,DE=

如图,在△ABC中,D,E,F分别为三边的中点,则下列说法错误的是A.ED‖AC,且DE=1/2AC B.若S△DEF=

错误的是D,若△DEF的周长为L,则△ABC的周长应该为2L,所以选D!如仍有疑惑,欢迎追问.祝:

如图,在△ABC中,D是BC中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.

∵DE⊥ABDF⊥AC∴AD是∠BAC的角平分线∵在△ADE和△ADF中∠EAD=∠DAF∠AED=∠AFD=90°AD=AD∴△ADE≌△ADF(AAS)又∴AE=AF∵AE=AFBE=DF∴AB=

如图,在Rt△ABC中,∠C=90°.D是AB的中点,E,F分别为边BC和边AC上,且DE⊥DF.求证:以AE,EF,B

证明:过点B作BG交ED延长线于G,连结FG.因为角C=90度,所以角FBG=90度.BG//CA.因为D是AB的中点,所以AD=DB因为BG//CA所以角GBD=角A,又因为角BDG=角ADE.所以

如图,在△ABC中,AB=AC,∠BAC=120°,D F分别为AB AC的中点DE⊥AB,GF⊥AC,

连接AE和AG∵∠BAC=120°,AB=AC∴∠B=∠C=30°∵D是AB的中点,且DE⊥AB;F是AC的中点,且GF⊥AC∴DE是AB的中垂线,GF是AC的中垂线∴BE=AE,AG=CG∴∠B=∠

如图,在△ABC中,BD、CE是高,M,N分别是BC、DE的中点,求证:MN⊥DE

连结MD,ME.因为BD是高,所以BC是直角三角形BCD的斜边,因为M是BC的中点,所以MD=BC/2,同理ME=BC/2,所以MD=ME,三角形MDE是等腰三角形,因为N是DE的中点,所以MN垂直于

已知如图在△abc中DE分别是AB,BC的中点,点F在AC延长线上,且CF=DE,求DC∥EF

答:证明:∵AE=EB,AD=DC,∴ED∥BC.∵点F在BC延长线上,∴ED∥CF.∵AD=DC,ED=DE,∠ADE=∠EDC,∴△ADE≌△CDE.∴∠A=∠ECD.∵∠CDF=∠A,∴∠CDF

如图,在三角形ABC中,D,E分别是AB,AC的中点,BE等于2DE,延长DE到F,使得EF等于B

证明:∵D,E分别是AB,AC的中点∴DE是△ABC的中位线∴BC=2DE,BC//DE∵BE=2DE,EF=BE∴BC=BE=EF∵BC//EF∴四边形BCFE是平行四边形(又一组对边平行且相等的四