如图在三角形a b c中d是边bc的中点且ad等于ac
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:07:04
∵AB=AC ∴△ABC为等腰三角形 ∴∠B=∠C ∵D为BC中点 ∴BD=CD ∵AB=AC∠B=∠C BD=CD ∴△ABD全等于△ACD(SAS) 2. 
∵BE∥CF,∴∠GBE=∠DCF,∠E=∠DEC,∵BE=CF,∴ΔDBE≌ΔDCF,∴BD=CD,∴AD中ΔABC的中线.
22线段中垂线上的点到线段两端点距离相等
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
延长ED,使DG=DE,连接CG、FG,∵DF⊥EG,∴EF=FG∵ΔDEB≌ΔGCD(边,角,边)∴BE=CG∵CF+DG>FG(Δ两边之和大于第三边)又∵GF=BE,FG=EF∴BE+CF>EF
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
连接EC,EB因为EA是角CAB的平分线又已知EF垂直AB于点F,EG垂直AC交AC的延长线于点G所以,易知EG=EF又有ED垂直平分BC同样易知EC=EB所以两个直角三角形CGE和BFE全等所以BF
过C点作CE垂直AD交AD于E点,连接BE因为∠BAD=15°,∠ADC=4∠BAD,所以∠ADC=60°,∠DCE=30°,DE=CD/2,又因为DC=2BD,所以DE=BD,∠DBE=∠DEB=∠
三角形BDE和三角形CFE面积相等我就不解释了.三角形BDE和三角形ADE也是相等的,因为两三角形底相等,AD=BD,且高也相等,都是过E做AB的垂线就是高,根据面积公式就知道底高都相等面积一定相等了
∵D为BC中点,∴SΔABC=2SΔABD,∵E为AD中点,∴SΔABD=2SΔABE,∴SΔABC=4SΔABE=4.
是求S△DEF吗?如下:S△AEF:S△ABC=1/4(△AEF的高和底分别是△ABC的高和底的1/2),同理S△BDE:S△ABC=1/4,S△CFD:S△ABC=1/4,所以S△DEF=(1-1/
证:AH⊥BC交EF于G点∵D,E,F,分别是边BC,CA,AB的中点∴AE=EC,AF=FB,BD=DC根据三角形的中位线定理,可得FH=1/2AC,EF=1/2BC,DE=1/2ABFH‖AC,E
答:(1)四边形ADEF是平行四边形,因为EF与AB平行、DE与AC平行,所以是平行四边形.(2)角DEF是角BAC,角EDF是角ACB,角DFE是角ABC,因为角EDF与角AFD相等,角AFD与角A
从Q作AC的平行线,分别交DF、BA于M、N又∵DE∥AC∵DE∥MN∥AC∴SQ:QP=SM:MD①,AN:NB=CQ:QB②∵DF∥AB∴SM:AN=QM:QN=MD:NB就有SM:MD=AN:N
∵BE∥CF∴∠E=∠CFD,∠EBD=∠FCD∵BE=CF∴△BDE≌△CDF(ASA)∴BD=DC∴AD是△ABC的BC边上的中线
c=ac-abad=ab+1/2bc=1/2(ab+ac)ad.bc=1/2(ab+ac)(ac-ab)=1/2[ac.ac-ab.ab]=1/2[3*3-4*4]=-7/2
∵BE∥CF∴∠E=∠CFD,∠EBD=∠FCD∵BE=CF∴△BDE≌△CDF(ASA)∴BD=DC∴AD是△ABC的BC边上的中线再问:可是我证明了两次再问:我证明完三角形BDC全等于三角形FPC
三角形ACD的周长36-16=20DE是边BC的垂直平分线,所以BD=CD三角形ABC周长=AC+BC+AB=AD+BD+BC+AC三角形ACD周长=AC+CD+AD就是三角形ABC周长-BC=三角形