如图在正方形abcd中p为对角线bd上一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:50:08
为你提供精确解答、1、因为P点在平面ABCD内的射影为A所以PA垂直于面ABCD连结AC,BD,交点为O连结EO因为E,O分别为PD,BD中点所以EO平行且等于1/2PB又EO在面AEC内所以PB平行
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
解析:∵在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD过P作PG⊥AD∴PG⊥底面ABCD∵PA=PD=(根号2/2)AD,E,F分别为PC,BD的中点∴PA=PD=
证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC
(1)取PA中点E,连接EF、DE因PD=DC,而DC=AD(正方形)则PA⊥DE(三线合一) 因PD⊥平面ABCD则PD⊥AB(AB在平面ABCD上)又AD⊥AB(正方形)则AB⊥平面PA
正方形ABCD在平面直角坐标系中的位置如图,在正方形内部找点P,使△PAB,△五个.(0,0),(t-1,0),(1-t,0)(0,1-t),(0,t-1再问:答案是9
(1)CD⊥ADP∴CD⊥APEF∥=AP/2﹙中位线﹚∴EF⊥CD⑵设PD=1取坐标系D﹙000﹚A﹙100﹚C﹙010﹚P﹙001﹚设G﹙a,0,b﹚∈PAD则F﹙1/2,1/2,1/2﹚GF=﹛
设BP与AE的交点为O∵AB=BC,∠ABE=∠CBE=45°,BE=BE∴△ABE≌△CBE∴∠BAE=∠BCE∵P是AD中点易证:△ABP≌△DCP∴∠ABP=∠DCP∵∠BCE+∠DCP=90°
不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+
∵∴⊥‖‖⊿△∽≌→∠°∟⌒⊙⊕ ½ ‰º¹²³^2√SAS →
(1)连结BD,AC交于O.∵ABCD是正方形,∴AO=OC,OC=12AC连结EO,则EO是△PBD的中位线,可得EO∥PB∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC(2)∵PA⊥平面
第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A
十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P
1.阴影部分为平行四边形,高为a'd,底为aa'=x,x(2-x)=1,x=1再问:那第二题呢?再答:没说是什么类型方程吗再问:方程是x^2-2bx+a-4b=0再答:2.根的判别式化简后b^2+4b
图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB
题目有误,应该是PA=AD1.∵面PAD⊥面ABCD∴∠PDA就是PD与底面所成的角即∠PDA=45°又PA=AD∴PA⊥AD又面PAD⊥面ABCD∴PA⊥面ABCD2.Q为PD中点:连DE延长交CB
(1)因PA垂直底面ABCD,所以PA垂直BD又因底面ABCD为正方形,所以BD垂直ACPA、AC是在平面PAC内因此BD垂直平面PAC(2)45度PA垂直底面ABCD角PAD为90度又因PA=AB,
∵P点在平面ABCD内的射影为A∴PA⊥平面ABCD则PA⊥CD∵四边形ABCD为正方形∴CD⊥AD则CD⊥平面PAD∵CD∈平面PCD∴平面PCD⊥平面PAD则二面角C-PD-A为直角
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG
证明:(1)取AB中点E,连接EF,DE∵E,F分别是AB,PB的中点,∴EF∥AP,∴AP和DF所成的角即为EF和DF所成的角,即∠DFE或其补角;由已知四边形ABCD是正方形,假设PD=DC=a,