如图在菱形abcd中ab等于二根号三角abc等于六十度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:37:45
(Ⅰ)证明:取AB的中点M,连接GM,MC,G为BF的中点,所以GM∥FA,又EC⊥面ABCD,FA⊥面ABCD,∴CE∥AF,∴CE∥GM,∵面CEGM∩面ABCD=CM,EG∥面ABCD,∴EG∥
每条边长为1,总共4厘米
因为菱形四边相等所以周长为4×10=40接下来是面积,求菱形面积有两种方法:一是低×高,二是对角线×对角线×二分之一这道题没有高所以用第二种.因为OA=8,OB=6所以AC=2×8=16BD=2×6=
(1)证明:∵ABCD-A1B1C1D1是直四棱柱,且ABCD是菱形,∴B1C1∥A1D1,且B1C1=A1D1,AD∥A1D1且AD=A1D1,∴B1C1∥AD且AD=B1C1,∴四边形AB1C1D
因为菱形ABCD所以AC,BD互相垂直平分且平分一组对角又ON⊥AD,OM⊥BC,OE⊥AB,OF⊥DC所以ON=OM=OE=OF(角平分线性质定理)
连接BDDE⊥ABAD=DB]AD=BD而ABCD为菱形AD=AB综上ABD为等边三角形∠ABC=120°DE=2√3S=AB*DE=8√3
因为AB/BC=6/4=3/2,CD/AC=7又1/2/5=3/2即AB/BC=CD/AC在三角形ABC和三角形CDA中因为∠B=∠ACDAB/BC=CD/AC所以三角形ABC相似于三角形DCA所以A
1、连接D1C交DC1与F,连接EF.有题意可知点F是D1C的中点,又因为点E是BC的中点,所以直线EF是三角形BCD1的中位线,所以EF//BD1,有因为EF属于面C1DE,所以D1B//平面C1D
证明:∵AB=CD,AB//CD∴四边形ABCD是平行四边形∵CB=CD∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)
话说应该是先求证:△AED≌△DFB,然后再求证△CDG≌△CBG'吧?先证明△AED≌△DFB:因为ABCD是菱形,所以AB=AD=BD=DC=BC,所以△ABD和△DCB是全等的等边三角形.所以角
NM垂直ADAM=2再问:能具体点吗?再答:菱形两条对边垂直角dab=60度AM=2AE=AB
因为四边形ABCD为菱形,所以AB等于AB,CB等于CD,角ABD等于角ADC因为AE等于AF,所以BE等于DF,因为BE等于DF,CB等于CD,角ABD等于角ADC,所以三角形CBE全等于三角形CD
在菱形ABCD中,AB=AC=BC=AD=CD,所以∠BCA=∠ACD=60度,所以∠BCD=120度.ABCD的面积为5*5=25
AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D
解法1:因AB=BC=CD=DA所以四边形ABCD是菱形(根据:四条边都相等的四边形是菱形)解法2:因AB=CD,BC=DA所以四边形ABCD是平行四边形又AB=BC所以四边形ABCD是菱形(根据:有
∵形ABCD∴AC⊥BD,∠DAO=∠BAO∵AB⊥DE,OA=DE∴△DAO全等于△ADE∴∠ADE=∠DAO∴∠ADE+∠DAO+∠BAO=90∴∠ADE=∠DAO=∠BAO=30∴DE=AD×c
这一菱形的周长=5*4=20菱形被对角线分成四个三角形,每个三角形的边长分别为345一个三角形的面积=0.5OA*OB菱形面积=四个三角形的面积=0.5OA*OB×4=2OA*OB=2×0.5AC×0
解题思路:由AB∥CD,AB=CD,得四边形ABCD是平行四边形,再由AB=BC,得四边形ABCD是菱形解题过程:解:四边形ABCD是菱形理由:∵AB∥CD,AB=CD∴四边形ABCD是平行四边形∵A