如图所示 光滑1 4圆弧形槽的底端B与长L=3m的水平传送带相接

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/06 19:39:33
(2013•龙江县二模)如图所示,一质量为m的滑块从高为h的光滑圆弧形槽的顶端A处无初速度地滑下,槽的底端B与水平传送带

(1)滑块在由A到B的过程中,由动能定理得:mgh=12mν2B-0,解得:νB=2gh;(2)滑块在由B到C的过程中,由动能定理得:μmgL=12mν20−12mν2B,解得,μ=ν20−2gh2g

)如图所示,光滑1/4圆弧形槽的底端B与长L=5m的水平传送带相接,滑块与传送带间动摩擦因数为0.2,与足够长的斜面DE

1、势能与动能转化公式得mgR=mv^2/2,得滑块在圆弧低端是速度为v=4m/s,滑块滑动时受到传送带反向摩擦力作用,摩擦力造成的加速度为a1=0.2g=2,滑动时间为v0-at=0,t=2s,s=

质量分别是mA、mB、mC的三的物体之与水平桌面上,A从B的光滑圆弧槽的右端自静止滑下,当A滑到圆弧槽的底端是A的速度为

额,找不到图~!1、现将BC当作一整体,设BC在A运动到底端时速度为V1,则mAV=(mB+mC)V1,可求得V1,即Vc2、此后,不用再考虑C,因为已经和AB分开.A运动到B左端最高点后相对于B做树

(1/2)如图所示斜面和水平面有一小段光滑圆弧连接斜面的倾角为37度一质量为0.5kg的物体从距斜面底端B点5...

1a=gsinθ-μgcosθ=3.m/s^2vB=(2aL)^1/2=6m/sa'=μg=3m/s^2t=v/a'=2s2(F-μmg)l-mgLsin37º-μmgLcos37º

1.质量均为m的三个物体ABC置于光滑水平面上,物体A从物体B的光滑半圆弧槽的右端自静止滑下,当物体A滑到圆弧槽的底端时

第一题首先对ABC整体分析:当A下来的时候mV=2mV1V1=1/2V当A自从左边上去的时候,A和B先发生作用对C受力分析:C只受到B对他的力,而B既受到A也受到C的作用且方向相反所以,此时C的加速度

(2014•达州模拟)如图所示,一平板小车静置于光滑水平面上,其右端恰好和一个固定的14光滑圆弧轨道AB的底端等高对接.

(1)滑块从A端下滑到B端,由机械能守恒得mgR=12mv20得v0=2gR=3m/s在B点,由牛顿第二定律得FN-mg=mv20R解得轨道对滑块的支持力FN=3mg=30N由牛顿第三定律可知,滑块对

如图所示,竖直平面内的3/4圆弧形光滑轨道ABC,其半径

(1)恰好到达最高点mg=mv^2/Rv=根号gRR=1/2gt^2t=根号2R/gvt=Xod=R根号2(2)能量守恒重力势能转化为动能mgH=1/2mv^2H=1/2Rh=H+R=3/2R(3)m

19、(12分)如图所示,一个光滑的四分之一圆弧与一段粗糙水平地面相连,地面右边有一竖直挡板C,它和圆弧底端B的距离为s

能量守恒一路用到底就可以了:(1)mgh=1/2mv^2==>v=10(2)f=0.1mg;fs+1/2mv^2=mgh==>v=9(3)f*s总=mgh==>s总=50米取9.5+19+19=47.

一质量m=1kg的滑块从高h=0.45m的光滑圆弧形槽的顶端A处无初速度地滑下,槽的底端与水平传送带

第一个问:动能定理可以求出物体刚开始到传送带上的时候的速度v0=3m/s第二个问:知道初始速度vo和末尾速度vt=5m/s,绝对位移为L=1m,则加速度a=8m/s2,a=ug,可以得出u=0.8运动

如图所示为一个竖直平面内光滑的圆弧形轨道,O为圆心

因为α和β角较小,所以A,B均可看成是简谐运动,因为绳长L相等,所以周期相等,此时运动到最低点,两个物体都做1/4个T,所以时间相同,为1:1.还有楼主2π更号L/G只能=T,你咋=1/4T啊==

如图所示,光滑1/4圆弧形槽的底端B与长L=5m的水平传送带相接,滑块与传送带间动摩擦因数为0.2,与足够长的斜面DE间

整个过程分几个部分:在圆弧AB滑下,末速度为vB,机械能守恒mgR=½mvB²  vB=√2gR=4m/s在传送带BC上滑动,vB大于传送带的速度,开始做匀减速

(2014•烟台二模)如图所示,一固定的14圆弧轨道.半径为1.25m,表面光滑,其底端与水平面相切,且与水平面右端P点

(1)物块从14圆弧滑至最低点过程中只有重力做功,根据动能定理有:mgR=12mv2−0得在轨道最低点物块的速度v=2gR=2×10×1.25m/s=5m/s物块在最低点时支持力和重力的合力提供圆周运

一个平板小车置于光滑水平面上,其右端恰好和一个14光滑圆弧轨道AB的底端等高对接,如图所示.已知小车质量M=3.0kg,

(1)A到B过程,由动能定理:mgR=12mvB2---①在B点:N-mg=mv2BR---②联立①②两式并代入数据得:vB=4m/s,N=30N有牛顿第三定律得物块对轨道的压力为15N.(2)对物块

如图所示,倾角α=30,长2.7m的斜面,低端与一个光滑的1/4圆弧平滑连接,圆弧底端切线水平.

沿斜面下滑a=g(sin30-μcos30)=2.5m/s^2VB=√(2as)=√(2*2.5*2.7)=√13.5机械能守恒mVB^2/2=mghc=mgrr=o.675mN=mg+mVB2/r=

(2013•日照二模)一个平板小车置于光滑水平面上,其右端恰好和一个轨道半径R=0.8m的14光滑圆弧轨道AB的底端等高

(1)滑块从A端下滑到B端,由机械能守恒定律得:mgR=12mv20解得:v0=2gR=2×10×0.8=4m/s   在B点由牛顿第二定律得:FN-mg=mv20R,解

一质量为m的滑块从高为h的光滑圆弧形槽的顶端A处无初速度地滑下,槽的底端B与水平传送带相接,

最后的动能(mV0^2)/2减最初的重力势能(根号2ghm)/2等于克服摩擦力做功产生的能量

如图所示,一质量为M的滑块从高为H的光滑圆弧形槽的顶端A处无初速度滑下,槽的底端B与水平传送带相接,

1.MgH=MV^2/2V=根号内2gH2.列个方程设加速度为a,时间t=(V0-V)/aV(V0-V)/a+(V0-V)^2/2a=L因为V=根号内2gH最后得a=(V0^2-2gH)/2Lgμ=a