如图所示 已知三角形abc中,点c是以a为中点的点b的对称点,od

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:56:46
如图所示,已知:三角形ABC中,BD平分角ABC,CD平分三角形ABC的外角角ACE,BD、CD交于点D

1、∵1/2∠ACE=∠D+1/2∠ABC∠ACE=∠A+∠ABC∴1/2(∠A+∠ABC)=∠D+1/2∠ABC1/2∠A+1/2∠ABC=∠D+1/2∠ABC∴∠D=1/2∠A2、∵AB∥CD∴∠

已知三角形ABC中,

这道题没有错,因为题中没有说是等边三角形,本题考察的知识点较多,环环相扣,解题过程如下:(1)延长AO交圆于E,则直径AO所对的

如图所示,已知三角形 abc中ab=ac,点d,e分别在ac,ab上,且bc=bd=de=ea

问题是什么是不是求∠A的度数?∵AE=ED,∴∠ADE=∠A,∴∠DEB=∠A+∠ADE=2∠A,∵BD=ED,∴∠ABD=∠DEB=2∠A,∴∠BDC=∠A+∠ABD=3∠A,∵BD=BC,∴∠C=

如图所示,已知三角形ABC中,A(-2,1),B(3,2)C(-3,-1),AD是BC边上的高,求向量AD及点D的坐标

求BC直线方程:k=(2+1)/(3+3)=1/2,直线方程为y-2=1/2*(x-3)即y=x/2+1/2求AD直线方程:由于垂直斜率为互倒数,k=-2,所以方程为y+1=-2*(x-2)即y=-2

如图所示,已知三角形abc中,以ab,ac为等边像外作等边三角形abf和等边三角形ace,连接be,cf,交于点d,

如图,即证∠1=∠2∵等边△ABF与等边△ACE中AF=AB,AC=AE,∠FAB=∠EAC=60°∴∠FAB+∠BAC=∠EAC+∠BAC即∠FAC=∠BAE∴△FAC≌△BAE∴FC=BE,△FA

如图所示,已知在三角形ABC中,AB大于AC,AD平分∠BAC,交BC 于点D.求证BD大于DC

在AB上截取AF=AC,连接DF,∵∠DAB=∠DAC,AD=AD,∴ΔADF≌ΔADC,∴DF=DC,在ΔBDF中,BD-DF再问:额

如图所示,已知在三角形ABC中,AB

AC=AE+CE=8,因为DE垂直平分BC,所以BE=CE所以AE+BE=8ABE周长为AE+BE+AB=14AB=6

如图所示 在三角形abc中,

解题思路:根据直角三角形的知识可求解题过程:最终答案:略

如图所示,在三角形ABC中,AB=BC=1,角ABC=120度,将三角形ABC绕点B顺时针旋转30度得三角形A1BC1,

DE=1-√3/3再问:第一问呢?给个过程嘛再答:不是有人解答了吗?等我写完早就悬赏结束再问:那个不对啊,他是从其他网站上复印过来的,题目都不一样http://zhidao.baidu.com/lin

已知如图所示,三角形ABC中,AB=AC,点E在CA的延长线上,且EF垂直BC求证AE=AF

EF交AB于F,BC于D在三角形EDC中,∠E=90-∠C∠AFE=∠BFD(对顶角)在三角形BFD中,∠BFD=90-∠B∠B=∠C所以∠AFE=∠EAE=AF

如图所示,三角形ABC内有关3个点,以这种3个点及三角形的3个顶点为顶点画三角形,已知这些点中任意三点不

答案:内部有3个点,在△ABC内能画出7个三角形内部有n个点,在△ABC内能画出(2n+1)个三角形如:当n=1时,在△ABC内能画出3个三角形当n=2时,在△ABC内能画出5个三角形当n=3时,在△

如图所示,已知:三角形ABC中,BC

因为DE为AB的垂直平分线所以EB=EA所以EB+EC=EA+EC=AC=9CM三角形BCE的周长=EB+EC+BC=9CM+BC=15CM所以BC=6CM

已知三角形ABC中.

如图,∠DBC=(180°-x°)/2=90°-x°/2. ∠DBA=90°+x°/2.同理.∠DCA=90°+y°/2.  x+y+50=180.  

已知三角形ABC中

因为AB,AC的垂直那个平分线分别交BC与点E,F所以AE=BE,AF=CF(线段垂直平分线上的点到线段的两个端点的距离相等)又因为角BAC=140所以角B加角C等于40所以角BAE加上角CAF等于4

如图所示,已知在三角形ABC中,角A的角平分线和外角角CBD的平分线相交于点P求证,PC平分角BCE

证明:过点P作PH⊥BC于H,PM⊥AD于M,PN⊥AE于N∵AP平分∠BAC,PM⊥AD,PN⊥AE∴PM=PN∵BP平分∠CBD,PM⊥AD,PH⊥BC∴PM=PH∴PH=PN∴PC平分∠BCE

三角形ABC中,已知

tanA+tanB+√3(根号3)=√3tanA*tanB把√3(根号3)移到右边去,提出-√3(根号3)得到tanA+tanB=-√3(根号3)(1-tanA*tanB)把(1-tanA*tanB)