如图所示 点P是平行四边形ABCD的对角线BD上任意一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:36:57
(1)过点A作AF⊥BC于F(1分)在Rt△AFB中,∠AFB=90°,∠ABF=60°∴AF=ABsin∠ABF=4sin60°=4× = BF=ABcos∠ABF=4cos60
过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P
(1)过点A作AF⊥BC于F(1分)在Rt△AFB中,∠AFB=90°,∠ABF=60°∴AF=ABsin∠ABF=4sin60°=4×=BF=ABcos∠ABF=4cos60°=4×在Rt△AFC中
平行条件→S1,S2,S3三个三角形相似根据相似加上S1=S2→PD=PE,AF=DF,AI=EI→S△ADE=4S1=4相似加上S2=2S1→HG=√2PD,HG边上的高H=√2PD边上的高hS(B
延长BP与AC交于点Q根据三角形两边和大于第三边三角形ABP,AB+AQ>BQ三角形PQC,QC+PQ>PC相加得AB+AQ+QC+PQ>BQ+PCAB+(AQ+QC)+PQ>(BP+PQ)+PCAB
连结PP‘∵将△PAB绕点A逆时针旋转到△P’AC∴PA=P‘A又∵△ABC是正三角形∴∠P’AP=∠CAB=60°∴△PAP’是正三角形∴PP‘=PA又∵PA=3∴PP’=3答:P和P‘之间的距离为
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
(1)过点A作AF⊥BC于F(1分)在Rt△AFB中,∠AFB=90°,∠ABF=60°∴AF=ABsin∠ABF=4sin60°=4×32=23BF=ABcos∠ABF=4cos60°=4×12=2
证明:四边形ABCD是平行四边形,则MA‖CQ,又MN‖AC所以四边形MACQ是平行四边形,同理可证四边形PACN是平行四边形故MA=QC,AP=CN而∠MAP=∠ABC=∠QCN故△MAD≌△QCN
图了?再问:再答:1.过D作DE平等交AC于E,AB=AC,AD是BC边上的高,则D是BC中点,DE是三角形CBF的中位线,DE=1/2BF。P是AD的中点,PF是三角形ADE的中位线,PF=1/2D
连接DP和AP做辅助线,根据直角三角形斜边中线定理,DP=PC=AP..所以三角形PAD是一个等腰三角形,又因为PQ垂直于AD,等腰三角形顶点垂线必然平分底边,所以PQ平分AD
(1)证明:如图所示,过D点作DE∥BF,交AC于E,因为AB=AC,AD为△ABC的高,所以根据等腰三角形的三线合一得D为BC的中点,所以DE=12BF.同理,因为P为AD的中点所以PF=12DE,
作Q关于AB,AC对称点Q1,Q2∵PQ=PQ1,QR=Q2R∴PQ+QR+PR>=Q1Q2,(当P,R都在A点取等)∵∠Q1AB=∠QAB,∠Q2AC=∠QAC∴∠Q1AB+∠Q2AC=∠QAB+∠
e,d分别为ab和ac的中点,所以ed平行于bc;f,g分别为ob和oc的中点,所以fg平行于bc;故ed平行于fg.e,f分别为ab和ob的中点,所以ef平行于ao;d,g分别为ac和oc的中点,所
http://zhidao.baidu.com/question/331776854.html
∠PDB=∠PBD=45+∠PBO=45+∠DPC(∠PDB外角)所以,∠PBO=∠DPC.又BP=DPRtΔBOP≌RtΔPDE所以,BO=PE2)PE=AO=BO=OC=a,AP=xEC=DE=O
作辅助线AP,因为D,E,F,G分别是PB,PC,AC,AB上的中点在三角形PBC中,DE//BC,同理在三角形ABC中,FG//BC所以DE//FG;在三角形APC中,AP//EF;在三角形APB中
证明:∵DE,EF是△ABC的两条中位线.∴DE∥BC,EF∥AB,∴四边形BFED是平行四边形.