如图所示,PE.PD分别为△ABC的边AC.BC的垂直平分线,且
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:25:51
(1)S=√3/4*a^2(2)h=PD+PE+PF=√3/2*a(3)h=1,a=2√3/3PD=1/2,PE=1/3,PF=1-PD-PE=1-1/2-1/3=1/6h/a=sin60°=√3/2
证明:因为AP²=AD²+DP²=AF²+FP²BP²=BE²+EP²=BD²+DP²CP²
如图所示,过点P作MN//BC,分别交AB,AC于M,N过点P作XY//AC,分别交BA,BC于X,Y过点P作UV//AB,分别交CB,CA于U,V则易知△PVN,△PMX,△PUY都是等边△∵PD,
如图,延长DP,交AC于G,延长FP交BC于H,∵PD∥AB,PF∥AC,∴四边形AFPG是平行四边形,∴AG=PF,∵PE∥BC,∴∠PEG=∠C=60°,同理,∠PGE=∠A=60°,∴△PEG等
PD+PE+PF=a.证明:延长FP交BC于M.∵PF∥AC.∴∠PFB=∠A=60°=∠B,即梯形PFBD为等腰梯形,BD=PF;∵PM∥CE;PE∥MC.∴四边形PMCE为平行四边形,MC=PE;
解;面积不变可得:三个小面积的和等大三角形的面积S=(1/2)*(PD+PE+PF)*2=(1/2)*2*2*cos60°PD+PE+PF=√32,PD²+PE²+PF²
设a为正△ABC边长;(1)当P为△ABC内一点时,连接P与各顶点,得△PAB,△PAC,△PBC.此3个△的面积和等于△ABC的面积;而△PAB=1/2*a*h1,△PAC=1/2*a*h2,△PB
连结AP,BP,CP,则等边三角形ABC由三个小三角形组成设等边三角形的边长是a,高为h,面积是S,S=a*h/2=a*PD/2+a*PE/2+a*PF/2=a(PD+PE+PF)/2∴PD+PE+P
点P在AB的垂直平分线上.证明:∵PD,PE分别垂直平分BC,AC.∴PB=PC,PC=PA.∴PB=PA.故:点P在AB的垂直平分线上.(到线段两个端点距离相等的点在这条线段的垂直平分线上)
答案是a先延长DP,EP,FP假设FP的延长线交BC与G因为ABC是正三角形,且PD‖AB,PE‖BC,PF‖AC所以,PF=BD,PD=DG,PE=GCPD+PE+PE=BD+DG+DC=BC=a
作PM∥AC交BC于M,则CM=PE作PN∥BC交AB于N,则PF=PN=BDPD+PE+PF=DM+MC+BD=BC=4正三角形的边长BC=4你应该会算的,如不清楚我再告诉你.
结论:AM=3(PD+PE+PF)证明:连接PA,PB,PC可得到三个三角形,他们的面积之和就是正三角的面积.S=1/2(AB+AC+BC)*(PD+PE+PF)AB=AC=BCS=1/2*3BC*(
证明:如图:连接AP,在△ABP和△ACP中,AB=ACPB=PCAP=AP∴△ABP≌△ACP,∴∠PAB=∠PAC,∵PD⊥AB,PE⊥AC,∴∠ADP=∠AEP=90°,在△APD和△AEP中,
因为AB=AC,BP=CP,AP=AP所以ABP与ACP全等所以角BAP=角CAP又因为PD⊥AB,PE⊥AC(角平分线上的点到两边的距离相等)所以PD=PE符号不会打,自己整理
3^0.51(3^0.5)/4
楼上不详细,设边长为X,面积S=1/2×X(PD+PE+PF)=X×二分之根号三X×1/2得出PD+PE+PF=高所以.
证明:设P是ΔABC内任意一点,P到ΔABC三边BC,CA,AB的距离分别为PD=p,PE=q,PF=r,记PA=x,PB=y,PC=z.则x+y+z≥2*(p+q+r)证明如下:因为P,E,A,F四
求图,无图肿么办再问:这是图片再答:连接pa,证明三角形abp全等三角形acp,得角abp等于角acp,之后再证明三角形pbd全等三角形pce,so,就可以了
作PH‖AB交AB于H,作FM‖BC交AC于M, 易得△AFM和△FHP为等边△,四边形BDPH和PEMF为平行四边形. ∴PF=FH,PE=FM=AF,PD=BH ∴P