如图所示,一光滑绝缘导轨
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:53:53
AD对.开关S由1掷到2,电容器开始向导体棒放电,放电的电流是按指数递减的,电容器的电量也是按指数递减的,所以A对、B错.因导轨光滑,所以在有电流通过棒的过程中,棒是一直加速运动(变加速),C错.由于
A、t时刻导体棒有效的切割长度为L=2vttanθ2=kt(k=2vtanθ2)回路中感应电动势为E=BLv总电阻为R=(2vt•tanθ2+2vttanθ2sinθ2)r则感应电流I=ER=Bv(2
公式右边的小球质量要变
(1)a棒为电源,b棒和电阻R等值电阻 IaIR=21(2)b棒保持静止,则mbg sinθ=BIbLIb=mbgsinθBL①Ia=2Ib &n
说真的,这个题目我也做过,你就想一下能量守恒,mgh=1/2mv2V=at两个公式合在一起也就出现在势能和时间的关系了!现在大二,以前的也不太记的了,其实这一类题目主要就是能量守恒,动量守恒,还有一个
线框通过磁场时会损耗能量,每反复一次,装置上升的最大高度都会变小,即整体反复运动的区间会不断下移,经过足够长时间后,线框就不会在进入磁场,也就没有了能量的损耗,那么整体就会在一个固定不变的区间,反复运
那个是立体图,金属棒在导轨内侧,你看成在外侧了.再问:来自于http://www.jyeoo.com/physics2/ques/detail/7017b177-8610-49bc-b5d1-3766
(1)由受力分析得,当库仑斥力等于重力时速度最大:mg=kQ^2/r^2由上式可求得距离r.(2)以后小球做加速度大小越来越大的变减速运动,当速度减到零之后又反向做加速度大小越来越小的变加速运动,到达
(1)由于可以到达D点,N点必然有速度,必然需要向心力.而且,电场力此时一定向右,大小为Eq.因此,需要的支撑力一定大于Eq,AB都是错的.选项C是对的.此时的向心力可以由电场力提供,支撑力为0.小球
1)要使小滑块能运动到最高点,m在L点的向心力=重力,否则提前掉下来了.V=√(gR)电场力为F=Eq摩擦力为f=μmg设距离s释放,则(F-f)s=mg2R+0.5mV^2则:s=1.5m(2)到达
A、金属棒在拉力及安培力的,作用下做加速度减小的加速运动,当拉力等于安培力时,速度达最大,即F=BIL=B2L2VR,得V=FRB2L2,故A错误;B、由动能定理可知,拉力与安培力的总功等于金属棒动能
若使小球在圆轨道内恰好能作完整的圆周运动,在最高点时,恰好由小球受到的重力和电场力的合力提供向心力,则有 mg-qE=mv2R由题意,qE=34mg,则得14mgR=mv2对A到圆环最高点的
C和D的区别是在电流方向,答案C(d到c的电流,说明d是正极)答案D:(电容上级板带正电,说明c是正极).剩下的就是切割磁力线,判断电流方向的法则了.这样能明白吗?
当两球收到的作用力为0时,加速度为0,速度达到最大,若此时两球距离为r,则选A球为研究对象,受力分析可知,重力在斜面方向的分力为G1=mgcos45B球对A球的斥力F在斜面方向的分力为F1=【k*q*
设小球越过导轨后的速度为v1,导轨的速度为v2.根据动量守恒得,mv=mv1+mv2根据机械能守恒得,12mv2=12mv12+12mv22联立两式解得:v1=v,v2=0或v1=0,v2=v(不符合
因为电流在减小电动势E=BvL,i减小意味着E减小,那么就是v在减小
A、根据动能定理研究从开始下滑回到原处有:W安=△EK因为导体棒上和下过程中,安培力都做负功,所以整个过程导体棒动能减小,所以滑回到原处的速率小于初速度大小v0,故A正确.B、对导体棒上和下进行受力分
解题思路:(1)线框克服安培力做功等于整个回路产生的热量,根据动能定理求出导体棒从静止开始运动到MN处线框克服安培力做的功,从而求出线框产生的热量.(2)在线框进入磁场和离开磁场的过程中,做变加速直线
A、当磁场方向垂直纸面向外并增强时,根据楞次定律,则有感应电流顺时针方向,即由a到b,再由左手定则,受到的安培力方向向左,因此杆ab将向左运动,故A错误;B、当磁场方向垂直纸面向外并减小时,根据楞次定
如果是导体,导体上的电势处处相等,就是说带电体在上面移动时,电场可能不做功,当然具体情况具体分析,最好你把具体的补充一下,大家好解决,当然绝缘导轨不挡电场