如图所示ab是圆o的直径点d,e在圆o上,ac,bd的延长线交与c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:29:00
如图所示,AD是圆O的直径,BC切圆O于点D,AB,AC与圆O相交于E.F,求证AE×AB=AF×AC

夜猫猫_涵er,(图见参考资料.)1)如图1.连接DE、DF,AD为直径,则∠AED=90°=∠ADB;又∠BAD=∠BAD.则△AED∽△ADB,AD/AE=AB/AD,AD^2=AE×AB⑴;同理

如图所示,圆o的直径AB=4.角ABC=30°BC=4根号3,D是线段BC的中点!判断点D与圆o之间的位置关系 并说明理

设BC与圆交与点E,连接BE.则三角形BAE为直角三角形.(在圆上,过圆直径的三角形为直角三角形)BA=4,角ABE=30¤,=>BE=2根号3因为D为BC的中点所以BD=DC=2根号3=BE即E点就

如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,

这就是弦切角=圆周角呀过CO作直径,交圆周于POC垂直CE. ∠ECD+∠DCP=90°直径的圆周角∠CDP=90°,所以 ∠P+∠DCP=90°∠ECD =∠P圆周角同弧上的圆周

与圆有关,证明边等如图所示,△ABC内接于圆O,AB是直径,D在圆O上,过点C的切线交AD的延长线于点E,且AE⊥CE,

连接OC.因CE为圆O的切线,故OC⊥CE.已知AE⊥CE,则OC‖AE,得∠DAC=∠ACO.因OC=OA,故∠CAO=∠ACO.已证∠DAC=∠ACO,得∠DAC=∠CAB,则:弧DC=弧BC(同

如图所示,ab是圆o的直径,bc切圆o于点b,oc平行ad,求证:dc是圆o的切线

因为AD//OC所以角1=角3角2=角4又因为OD=0A所以角1=角2所以角3=角4在三角形OBC和三角形ODC中OB=OD角3=角4OC=OC所以三角形OBC和三角形ODC全等又因为OB垂直于BC所

如图所示 AB为圆O的直径 D是弧BC的中点 DE⊥AC交AC的延长线于点E 圆O的切线BF交AD的延长线于点E

1连结OD∵OA=OD∴∠OAD=∠ADO∵D是弧BC的中点∴∠CAD=∠OAD∴∠CAD=∠ADO∴OD‖AE又∵DE⊥AE∴OD⊥DE∴DE是圆O的切线2过D作DH⊥ABH为垂足∵D是弧BC的中点

:如图所示:AB是○O的直径,AC是弦,CD是○O的切线,C为切点,AD⊥CD于点D

1.连接AB,因为OC=OA,所以∠OCA=∠OAC,因为∠ACD+∠OCA=90°,所以∠ACD+∠OAC=90°.因为∠OAC+∠B=90°,所以∠B=∠ACD.因为OB=OC,所以∠B=∠OCD

如图所示,AB是⊙O的直径,D是圆上一点,AD=DC,连接AC,过点D作弦AC的平行线MN.

(1)证明:连接OD,交AC于E,如图所示,∵AD=DC,∴OD⊥AC;又∵AC∥MN,∴OD⊥MN,所以MN是⊙O的切线.(2)设OE=x,因AB=10,所以OA=5,ED=5-x;又因AD=6,在

关于圆的切线应用题如图所示 AB是○O的直径,BD是○O的弦,延长BD到C,使CD=BD,连接AC,过点D作DE⊥AC,

图形如图1、连接AD,AD⊥BC,又因为BD=CD,AD=AD故:AC=AB2、DE⊥AC,三角形CDE与三角形CAD相似,∠CDE=∠CAD=∠BAD=∠ADO故∠CDE+∠EDA=∠ADO+∠ED

(1)如图所示,已知三角形ABC是等边三角形,以BC为直径的圆O交AB,AC于点D,E求角DOE的度数

因为三角形ABC是等边三角形所以角B=角C=60度因为OB=OD=OC=OE所以三角形BOD和三角形COE都是等边三角形所以角BOD=角EOC=60度所以角DOE=180-60-60=60度再问:(2

如图所示,已知AB是圆O的直径,点C在圆O上,且AB=12,BC=6..(1)如果OD垂直AC,垂足为D,求AD的长

1、∵直径AB∴∠ACB=90∵AB=12,BC=6∴AC=√(AB²-BC²)=√(144-36)=6√3∵OD⊥AC∴AD=AC/2=3√32、∵半圆面积S=π×(AB/2)&

如图所示,以等腰三角形ABC的一腰AB为直径的圆O交BC于点D

你问的应该是一道大题中的一个问,其实圆心O应该在AB的左上角.不知道你是中学几年级的,我下面的解法不知道你学没学过,如果不懂欢迎准问.如果圆O与AC相切,说明角OAC是90度,那么就有了角OAB+角B

OA是圆O的半径,以OA为直径的圆C与圆O的弦AB交于点D求证D是AB中点

证明:连接OD∵OA是直径∴∠ADO=90°∴OD⊥AB∴AD=BD∴D是AB的中点

如图所示,AB是圆O的直径,点C是弧AB的中点,D为圆O上一点,求角ADC的度数

已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9

如图所示,已知三角形ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D做DE⊥AC于点E,求证DE是⊙O的切线

这个只需要证明角ODE是直角就可以了,AB=AC角ABC=角ACB且AD垂直AC所以角ADC=90°又因为DE垂直AC所以角AED=90°角A是公共角,所以有角ADE=角ACB=角ABCOA=OC所以

已知:如图所示,AB是半圆O的直径,DC切半圆O于点C,AD⊥CD于点D,CE⊥AB于点E.证明:CE=CD.

证明:连结OC,如图,∵DC切半圆O于点C,∴OC⊥DC,∵AD⊥CD,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠OCA=∠OAC,∴∠OAC=∠DAC,在△ADC和△AEC中,∠ADC=

AB是圆O的直径,点D在圆O上,BC为圆O切线,AD∥OC,求证:CD是圆O的切线.

连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB

如图所示,已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C,若D为AD中点,求证:直线CD是圆O

证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对的圆周角是直角】∴∠PCA=90º∵D是AP的中点【根据直角三角形斜边中线等于斜边的一半】∴CD=AD=DP∴∠DAC

如图所示,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于点E,连接AC,与DE交于点P.

DP=PE.证明如下:∵AB是⊙O的直径,BC是切线,∴AB⊥BC.∴DE∥BC,∴Rt△AEP∽Rt△ABC,得EPBC=AEAB.①又∵AD∥OC,∴∠DAE=∠COB,∴Rt△AED∽Rt△OB

如图,AB是圆O的直径,CD⊥AB于点E,交圆O于点D,OF⊥AC于点F.

这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定