如图所示ac为圆o的直径且pa垂直于ac

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:33:54
如图,已知直线PA交圆O于A、B两点,AE是圆O的直径,点C为圆O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D

设DA=X,DC=6-DA=6-X,连接EC,AE是直径,所以∠ACE=90°=∠CDA,∠CAE=∠CAD,所以⊿ACE∽⊿ADC,[AA]AE:AC=AC:ADAC²=AE*ADAD&#

如图所示,BC是⊙O的直径,P为⊙O外的一点,PA、PB为⊙O的切线,切点分别为A、B.试证明:AC∥OP.

证明:连接AB交OP于F,连接AO.∵PA,PB是圆的切线,∴PA=PB,∵OA=OB∴PO垂直平分AB.∴∠OFB=90°.∵BC是直径,∴∠CAB=90°.∴∠CAB=∠OFB.∴AC∥OP.

如图'PA'PB圆O的切线,A'B为切点'AC是圆O的直径'角BAC=25度'求角P的度数

l连接OPOP垂直平分AB交AB于D△OAD∽△OAP∠P=2∠BAC=50°再问:三角形'Oad=oap求解释再答:两个三角形不是全等,是相似。两个都是Rt是三角形且有一个公共角∠AOP或者不用相似

已知直线PA交园心O于A、B两点,AE是圆心O的直径,点C为圆心o上一点,且AC平分角PAE.过C作cD垂直PA,垂足为

连接OC..∵点C在⊙O上,OA=OC,.∴∠OCA=∠OAC..∵CD⊥PA,.∴∠CDA=90°,则∠CAD+∠DCA=90°..∵AC平分∠PAE,.∴∠DAC=∠CAO..∴∠DCO=∠DCA

如图,已知直线PA交圆O于A,B两点,AE是圆O的直径,点C为圆O上一点,且AC平分角PAE,过C作CD⊥PA,垂足D

过O作OM⊥AB于M.即∠OMA=90°,∵AB=8,∴由垂径定理得:AM=4,∵∠MDC=∠OMA=∠DCO=90°,∴四边形DMOC是矩形,∴OC=DM,OM=CD.∵AD:DC=1:3,∴设AD

如图,已知直线PB交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA,垂足为

连接OC,过点O作OF⊥AC于F∵CD⊥PA,OF⊥AC∴∠ADC=∠AFO=90∵AC平分∠PAE∴∠PAC=∠OAC∴△ACD∽△AOF∴AF/OF=AD/CD∵CD=2AD∴AD/CD=1/2∴

如图,已知直线PA交圆O于A,B两点,AE是圆O的直径,C为圆O上一点,且AC平分角PAE 若AD:DC=1:3 求圆O

半径等于3AC/2连接CE,根据圆的性质AC垂直于CE因为角DAC=角CAE所以三角形ADC与三角形ACE相似所以AC/AE=AD/DC所以AE=3AC所以半径=3AC/2

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径.点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为

1连接OC因为OA=OC所以∠OAC=∠OCA因为∠OAC=∠PAC所以∠OCA=∠PAC所以OC//PA因为CD⊥PA所以OC⊥CD所以CD是⊙O的切线2连接CE因为CD⊥PA,AD:CD=1:3所

如图,已知直线 交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA ,垂足为D

出现DC+DA=6一般首先考虑从几何上构造.但是这个题有更简单的方法.题目给出AE=10,而三角形ACD和AEC相似,设AD=x,DC=y,可以根据相似关系列出xy的一个关系式.结合x+y=6可以列两

如图所示,p为⊙o外一点,pa,pb为⊙o的切线,A,B为切点,AC为⊙o的直径,PO交⊙o于点E.

AB与PO垂直,AP与AO垂直,可推出∠APO=∠BAC,∠APB=2∠APO=2∠BAC再答:PO=√2AO=4√2再问:大侠,求过程再答:刚写再问:sorry,图错了。再问:好了没?再问:

如图,已知PA垂直圆O所在的平面,AB是圆O的直径,AB=2,C是圆O上的一点,且AC=BC,PC与圆O所在的平面成45

①求证:EF//面ABC证明:∵E是PC的中点,F数PB的中点∴EF是△PBC的中位线∴EF//BC∵BC∈面ABC∴EF//面ABC②求证:EF⊥面PAC∵AB是⊙O的直径∴∠ACB=90°即AC⊥

如图,AC是圆O的直径,PA,PB是圆O的切线,切点分别为A,B.OP与CB有怎样的位置关系

OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3

p为圆o外一点,PA,PB为圆o的切线,A,B是切点,BC是直径.求证:AC‖OP

“樱之雪舞—欣”:OA⊥PA,OB⊥PB(半径⊥切线)PA=PB(圆外一点到圆的切线相等),OP=OP,∠PAO=∠PBO=90°△PAO≌△PBO∠POB=∠POA∠ACO=1/2(∠AOB=∠PO

如图所示,已知:PA为圆O的切线,A为切点,AB为圆O的直径,弦BC平行OP交圆O于点C,求证,PC为圆O的切线.

证明:连接OC∵OB=OC∴∠OBC=∠OCB∵PO∥BC∴∠AOP=∠OBC,∠COP=∠OCB∴∠AOP=∠COP∵PO=PO,OC=OA∴△OAP≌△OCP∴∠OAP=∠OCP∵是切线切线,AB

已知PA⊥圆o所在的平面,AB是圆o的直径,AB=2,C是圆o上一点,且PA=AC=BC,E、F分别为PC,PB中点

只给提示可以吗?因为有些说明很难打.(1)中位线定理.EF是三角形PBC的中位线.(2)由中位线定理知EF||BC,而在圆o中,BC垂直于AC,即得EF垂直于AC;又因为PA垂直于BC,即PA垂直于E

5,如图所示,AC,BD为圆的两条互相垂直的直径,圆心为O,半径为R,

B,D都正确.电势由距离决定,O点和C点到两电荷的距离是等价的,从而电势也是一样的.沿直径移动,与-Q的距离一直减小,也就是电势能一直减少;与+Q的距离先减小再增加,也就是电势能先增加后减少;所以总的

如图PA PB分别切圆O A B BC为圆o的直径 求证AC平行OP

应该是PAPB分别切圆O,BC为圆o的直径求证AC平行OP证明:连接AB,OC∵∠PAO=∠PBO=90º∴PAOB四点共圆∴∠POB=∠PAB∵∠PAB=∠ACB【弦切角等于弦所对的圆周角

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA于D.

(1)证明:连接OC.∵OC=OA,∴∠OAC=∠OCA.∵AC平分∠PAE,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴AD∥OC.∵CD⊥PA,∴∠ADC=∠OCD=90°,即 CD⊥