如图抛物线c1:y=ax²-2x+3与x轴

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:15:07
已知抛物线C1:y=ax^2+bx与抛物线C2:y^2=2px(p>0)关于直线x+y=1对称

抛物线C2:y^2=2px(p>0),此抛物线焦点坐标F2为:(p/2,0),抛物线C1:y=ax^2+bx,此抛物线焦点坐标F1为:[-b/2a,(4ac-b^2+1)/4a]∵抛物线C1:y=ax

(2013•宁波模拟)如图,已知圆C1:x2+(y−1)2=4和抛物线C2:y=x2−1,过坐标原点O的直线与C2相交于

解(1)设直线AB:y=kx,A(x1,y1),B(x2,y2)联立y=kxy=x2−1,得x2-kx-1=0.则x1+x2=k,x1x2=-1.又MA=(x1,y1+1),MB=(x2,y2+1).

如图1,抛物线y=ax^2-3ax+b经过A(-1,0),C(3,-2)

(1)y=1/2x^2-3/2x-2(2)k=-3/2(3)看不清楚呀

如图,已知抛物线y=ax^2+bx+c(b>0,c

因为抛物线的顶点在x轴上,所以b^2-4ac=0,所以ac=b^2/4,代入b+ac=3,解得b=2(b=-6不合题意舍去);  因为ac=1,c

如图,抛物线y=-ax²+3ax+2.

答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0

如图 在平面直角坐标系中 已知抛物线y=ax^+2x+3(a

写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X

如图,抛物线y=ax²+bx+c 的顶点为P(-2,2)

先将y=ax²+bx+c改为y=a(x+k)²+c将顶点(-2,2)带入方程,得y=a(x+2)²+2在将点A带入方程3=a(0+2)²+2解a=4/1从题意得

已知抛物线c1:y=ax*2-4ax+4a+5(a大于0)的顶点为A,抛物线c2的顶点B在y轴上,且抛物线c1和c2关于

易得:C1的顶点坐标为(2,5),C2的顶点为关于P(2,5)成中心对称,∴C2的顶点坐标为(0,1)⑴BA=BC,则AC=AB=2√5,∴OC=√19,C(√19,0),设C1:y=a1x^2+1,

35.已知:如图,抛物线C1、C2关于x轴对称;抛物线C1、C3关于y轴对称.抛物线C1、C2、C3与x轴相交于A、B、

...sick.那么大个题目.--算啦~LZ.我帮你拉~菱形:ECFB等腰梯形:EBMH平行四边形:CMHA梯形:OFHN(这个想必就不用解释了.LZ只要在图中找到那几个点并且画出来就可以看清了)(2

如图 两条抛物线的表达式分别为y=2x^2和y=1/2x^2,则图中C1,C2所对应的函数表达式C1:y=______;

采用代入法,当X=1时,由y1=2x^2得y1=2;由y2=1/2x^2得y2=1/2因为x=1时y1>y2所以C1:y=2x^2;C2:y=1/2x^2

如图,抛物线y=ax²+bx-4a经过A(-1,0)

解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t

如图,已知抛物线C1的方程为:y=x2,抛物线C1关于直线y=1的对称曲线为C2,曲线C1与C2的交点为A,B

由定义易得到两条曲线的方程的求导结果为y'=2x与y'=-2(x-2)设直线l与曲线C1相切于点(x0,x0^2),则直线l的方程为y-x0^2=2x0(x-xo),令

如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a(x-1)^2-5,C1与C2的交点为A,B,点A的坐标是(

(1)∵点A(2,4)在抛物线C1上,∴把点A坐标代入y=a(x+1)2-5得a=1,∴抛物线C1的解析式为y=x2+2x-4,设B(-2,b),∴b=-4,∴B(-2,-4);(2)①如图∵M(1,

如图1,点A为抛物线C1:y= 1 2 x2-2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另

(1)∵当x=0时,y=-2;∴A(0,-2).设直线AB的解析式为y=kx+b,则:-2=b0=k+b,解得k=2b=-2∴直线AB解析式为y=2x-2.∵点C为直线y=2x-2与抛物线y=1/2x

如图,抛物线y=ax²+c(a

(△ABG+△BCD+四边形OABC)面积对称与四边形ODEF面积所以说△ABG+△BCD面积=10-6=4

如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a

解题思路:利用二次函数的性质求解。解题过程:过程请见附件。最终答案:略