如图抛物线y ax² bx 2交x轴于点a(-1,0)B(4,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:45:54
如图,抛物线y=1/2x²+3/2x-2与x轴交于A、B两点,与y轴交于C点。

(1)y=1/2(x²+3x-4)=1/2(x+4)(x-1)所以A:(1,0);B:(-4,0);C:(0,-2)(2)∵OA:OC=OC:OB=1/2、∠AOC=∠COB∴ΔAOC∽ΔC

如图,抛物线y=-x平方+bx+c与x轴交与A(-1,0)B(-3,0)两点求该抛物线解析式该抛物线

按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-

如图,抛物线的顶点为A(-3,-3),此抛物线交x轴于OB两点.(1)求此抛物线的解析式

⑴顶点为(-3,-3)的抛物线解析式可设为:Y=a(X+3)^2-3,又过原点,∴0=9a-3,a=1/3,∴抛物线解析式为:Y=1/3(X+3)^2-3,或Y=1/3X^2+2X.⑵令Y=0得,X=

如图,抛物线y=-x的平方-2x+2,与y轴交与C点,点D为抛物线顶点,CE⊥OD交抛物线于E,求直线CE的解析式.

由y=-x²-2x+2,令x=0,得y=2,所以C点坐标为(0,2)又y=-x²-2x+2-(x²+2x-2)=-(x+1)²+3得抛物线的顶点坐标为(-1,3

如图抛物线y=-1/2x²+1/2x+6与x轴交于A,B两点,与y轴交于点C

记得拆那我啊……)我在《求解答网》帮你找到原题哦.以后不会的问题,就直接去求解答网,方便快捷,答案还详细.

如图,抛物线y=x^2+2x-3与x轴的交于A,B两点,与y轴交于C点.

1、令y=0,则x^2+2x-3=0,(x+3)(x-1)=0,x1=-3,x2=1,B(-3,0),令x=0,y=-3,C(0,-3),2、由前所述,A(1,0),y=(x+1)^2-4,对称轴为x

如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,

(1).y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4对称轴:x=1;顶点P(1,4);C(0,3);A(-1,0)

如图,已知抛物线y=x²+3x-4与x轴交于A,B两点,与y轴交于C点,直线y=2x+2与抛物线交于

(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点

如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0)

(1)①对称轴x=-42=-2;②当y=0时,有x2+4x+3=0,解之,得x1=-1,x2=-3,∴点A的坐标为(-3,0).(2)满足条件的点P有3个,分别为(-2,3),(2,3),(-4,-3

如图,抛物线y=x2-2x-3与x轴交A、B两点

容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=

如图,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点,点P为第一象限的抛物线上的一点

解题思路:本题的关键是证明△AEF∽△DEG,设E(1,a),由相似比得关于a的方程,可得E的坐标,再求出AE的解析式,最后与抛物线的解析式联立方程组即可。解题过程:

如图:抛物线与x轴交于A(-1,0)、B两点,于y轴交于点C(0,-3),抛物线顶点为M,连接AC并延长交抛物线于点Q,

设此抛物线为y=ax^2+bx+c,A,C,在抛物线上所以代如得:c=-3,a-b=3AB的延长线交抛物线对称轴与Q,Q到x距离为6,所以可设Q(m,-6),抛物线的对称轴交x轴与Z点,根据相似则有:

如图,抛物线y=-x²+2x+3,交x轴

根为3和-1再问:���再问:�ܽ����再答:再答:�в��У�����再问:���������再答:���������ʵ���再答:��ʽ�ֽⷨ��һԪ���η���再问:������再答:���

如图抛物线y=a(x-1)2+4与x轴交于AB两点与y轴交于点CD是抛物线的顶点抛物线的对称轴与X轴交于eAB=DE解析

抛物线y=a(x-1)^2+4与x轴交于A(1-√(-4/a),0),B(1+√(-4/a),0),顶点D(1,4),对称轴与x轴交于E(1,0),由AB=DE得2√(-4/a)=4,∴-4/a=4,

(2009•河池)如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的

(1)①对称轴x=-42=-2;②当y=0时,有x2+4x+3=0,解之,得x1=-1,x2=-3,∴点A的坐标为(-3,0).(2)满足条件的点P有3个,分别为(-2,3),(2,3),(-4,-3

))如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,

1对称轴为x=-2x²+4x+3=0(x+3)(x+1)=0x=-1x=-3所以点A(-3,0)2点P(-2,3)或点P(2,3)3点D为(-2,1)CM:(y-3)/x=y/(x+2)2y

如图,抛物线y等于负x的平方加bx加c与x轴交于a,b两点 求该抛物线的解析式?

1)将A(1,0),B(-3,0)代入,得,-1+b+c=0,-9-3b+c=0,解得b=-2,c=3所以抛物线为y=-x²-2x+32)△ACQ的周长为CQ+AQ+AC,其中AC不变所以当

如图,抛物线L1:y=-x²-2x+3交x轴于A.B两点,交y轴于M点.抛物线L1向右平移2个单位后得到抛物线

答案如下图,有详细过程,你要吗? (1)令y=0时,得-x^2-2x+3=0,∴x1=-3,x2=1,∴A(-3,0),B(1,0).    ∵抛物线

如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点.将抛物线L1向右

L2:y=-(x+1)(x-3)=-x²+2x+3P(x0,y0)y0=-x0²-2x0+3P关于原点的对称点Q(x,y)x=-x0y=-y0-y=-x²+2x+3y=x

如图,抛物线y=x^2-2x-3与x轴交A.B两点

1y=(x-1)^2-4则A(-1,0)B(3,0)C(2,-3)AC解析式为y=-x-12PE=P点纵坐标-E点纵坐标=-x-1-x^2+2x+3=-(x-1/2)^2+9/4x属于[-1,2]因为