如图抛物线y x2 bx 5 2与直线AB交于点A(-1,0),B(4,5 2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:23:50
由y=-x²-2x+2,令x=0,得y=2,所以C点坐标为(0,2)又y=-x²-2x+2-(x²+2x-2)=-(x+1)²+3得抛物线的顶点坐标为(-1,3
亲,这是答案哦,你看看,去下面的链接中看完吧,
(1)设抛物线C:y2=2px(p>0),则2p=8,从而p=4因此焦点F(2,0),准线方程为x=-2;(2)证明:作AC⊥l,BD⊥l,垂足为C,D.则由抛物线的定义,可得|FA|=|AC|,|F
设抛物线方程为y=-a(x+1)^2+h------①,式中a>0把A(4,0)的坐标代入①得-25a+h=0----------②把x=0代入①得B(0,y)=(0,-a+h)由∠ABC=90°可得
看得出你思路是利用向量相乘等于0,再利用维达定理,带入使等式为0.向量FM1和向量FM2是不是表示错了?应该用末点坐标减去初始点坐标,向量FM1=(x1-p/2,y1)
答:抛物线y^2=2px(p>0)的焦点F为(p/2,0)直线x-my+m=0经过焦点:p/2-0+m=0,m=-p/2再问:好聪明啊,谢谢!
(1).y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4对称轴:x=1;顶点P(1,4);C(0,3);A(-1,0)
解题思路:此题考查学生灵活运用点到直线的距离公式化简求值,掌握二次函数求最值的方法解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://
联立y=xy=x2−x−3,解得x1=−1y1=−1,x2=3y2=3,所以,A(-1,-1),B(3,3),抛物线的对称轴为直线x=-−12×1=12,∴当-1<x<3时,PQ=x-(x2-x-3)
∵直线x=t分别与直线y=x、抛物线y=x2-6x+9交于点A、B两点,∴A(t,t),B(t,t2-6t+9),AB=|t-(t2-6t+9)|=|t2-7t+9|,①当△ABP是以点A为直角顶点的
解题思路:利用性质。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.p
解题思路:本题考点是直线与圆锥直线的位置关系,待定系数法表示方程,在本题验证直线过定点是先用参数表示出相关的直线方程解出两点的坐标再用斜率公式验证其是否为定值.解题过程:最终答案:略
抛物线与x轴相交于点A(-4,0),B(-2,0),则对称轴x=-3设抛物线方程y=a(x+3)²+c抛物线上的点C(-1,3),代入方程得4a+c=3再将B(-2,0)代入得a+c=0,∴
分析:(1)根据题意得点A的坐标是将x=1代入即可,根据对称性可得点B的坐标,即可得OB的解析式,与二次函数的解析式组成方程组即可求得点D的坐标;(2)当四边形ABCD的两对角线互相垂直时,由对称性得
(1)A(3,0)B(0,-3)则c=3y=x2+bx-3当x=3,y=0时,b=-2y=x2-2x-3(2)的题目有问题吧!
∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x-1)2+1,故选:C.
解题思路:代性质转化求解解题过程:请看附件最终答案:略
y=-1/2(x-4)(x+2)AE=4AO,E(-10,0)
第一题,设p为(x.y)所求点满足两个条件(1)y=x平方-x-3(2)|x-y|=2根号2(点到直线距离为根号二,这根据勾股定理可得)这时分两种情况考虑,一是x-y=2时,这时好像算得(三分之七,三
y=x-3A(3,0),B(0,-3)y=x^2+bx-c9+3b-c=0.(1)c=3b=-2y=x^2-2x-3y=(x-1)^2-4D(1,-4)