如图抛物线y=1 2x² bx-2与y轴交于A(x1,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:51:59
如图,抛物线y=x^2+bx+c与x轴交于A(-1,0)和B(3,0)两点,交y轴于E.

第(1)问即求解b和c,将已知交点代入方程式得1-b+c=09+3b+c=0联立方程解得b=-2,c=-3.所以关系式为y=x^2-2x-3第(2)问其实解出D、E和F的坐标就可求得.x^2-2x-3

如图,抛物线y=-x平方+bx+c与x轴交与A(-1,0)B(-3,0)两点求该抛物线解析式该抛物线

按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-

如图,已知抛物线y=(1/2)x^2+bx+c如图,已知抛物线y=1/2+bx+c与x轴交于A(-4,0)和B(1,0)

由A(-4,0,)B(1,0)可得y=(1/2)x^2+1.5x-2,当x=0时,y=-2,则C:(0,-2)①当AE=AC时,AE=AC=根号下((-4)^2+(-2)^2)=2根号5,因为A:(-

如图,抛物线Y=2/3X^2+bX+c的图像经过A(6.0)C(0.4)

第一问,带入数值方程可解第二问,O和A点坐标知道,与EA直线平行的直线过O点,可以写出2个直线的方程,E点到另外个直线的距离可以表示出来,长度使用EA的长度,也不难(这里注意抛物线给出了X.Y的关系)

如图,在平面直角坐标系中,抛物线y=-1/2x²+bx+4与直线y=kx+4交于点A、

我发现,你没图啊再问:再答:你图都没画对,第一问很简单啊,其实抛物线和直接必交于c(0,4)根据tan=1/2,等到A(-2,0)带入方程,b=1,k=2,然后你B都能求出来啊B(4,0)D是定点就在

如图,抛物线y=1/2x²+bx与直线y=2x交于点O(0,0)、A(a,12),点B是抛物线上O、A之间的一

因为BCDE是矩形,所以D在C点上方,在E的左边.且D点和E点纵坐标相同即y=n又因为E点在直线y=2x上,所以E点横坐标为(1/2)n,所以E(1/2n,n).同理C点与D点横坐标相同,即x=m,C

如图,在平面直角坐标系,直线y=kx+1交y轴与C,与抛物线y=-x^2+bx+c交于AB两点

因为在三角形PFG中,两边之差小于第三边,所以lPG-GFl小于等于PF当lPG-GOl取得最大值时,P、F、G不能构成三角形,所以P、F、G共线,即点G在PF的延长线上.

如图,抛物线y=ax^2+bx+c与x轴的一个交点A在点(

问题补充:如图,抛物线y=ax^2+bx+c与x轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则a的取值范围a的取值范围是-0.7

如图抛物线,y=ax^2+bx+2交x轴于A(-1,0),B(4,0)两点.

抛物线x轴于A(-1,0),B(4,0)两点,可以表达为y=a(x+1)(x-4)=ax²-3ax-4a-4a=2a=-1/2y=-(x+1)(x-4)/2其余题目不清楚,没法做再问:再答:

如图,抛物线y=1/2x²+bx与直线y=2x交于点O(0,0)、A(a,12),点B是抛物线上O、A

解(1):把A点的坐标代入y=2x上,得到,2a=12,a=6再把A(6,12)代入y=1/2x²+bx,解出b=-1∴抛物线的解析式为y=1/2x²-x(2):∵点C为OA的中点

如图,已知抛物线y= 1 2 x2+bx与直线y=2x交于点O(0,0),A

题不完整,不知是否如下题:如图,已知抛物线y=½x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点

如图,若抛物线y=-3分之根号3x^2+bx+c过(有图)

我可以只告诉你具体的思路么?数好难算.算了半天还算错了.UPDATE:知道哪儿错了,重算orz(1)y=负三分之根号三X方+三分之二倍根号三X+根号三(2)1,存在,P(1±二分之根号十,二分之根号三

如图①,抛物线y=ax2+bx的对称轴为直线x=-3/2,且抛物线经过点A(-4,2),AB平行于x轴,交抛物线于点B.

⑴由已知:-b/(2a)=-3/2,2=16a-4b,解得:a=1/2,b=3/2,∴二次函数解析式为:Y=1/2X^2+3/2X,令Y=2,X^2+3X-4=0,X=-4或1,∴B(1,2).⑵过B

如图 抛物线y=ax2+bx+c的顶点为d 与y轴交于c cd:y=根号3x+2根号3

(1)由题意知,C(0,2√3)D(-b/2a,(4ac-b^2)/4a)将其代入CD表达式中得c=2√3,故D(-b/2a,(8√3a-b^2)/4a)将其代入CD表达式中得,b=2√3(2)设直线

如图,抛物线y=ax²+bx-4a经过A(-1,0)

解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t

如图以知抛物线y=x^2+bx+c经过矩形ABCD的两个顶点AB

1)由A(0,2)B(4,2)代入抛物线,得到方程组,解得y=x^2-4x+22)过P点y轴垂线PO'因为AO=2S△APO=1/2*AO*PO’=3/2解得P的横坐标为3/2代入抛物线方程得到P纵坐

如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).

1直线y=x+m经过点A(1,0),即0=1+m,m=-1抛物线y=x2+bx+c都经过点A(1,0),B(3,2).即0=1^2+b+c2=3^2+3*b+cb=-3,c=2即y=x2-3x+2x>