如图正方形ABCD,BGFE的边长为3倍根号2,2,正方形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:17:39
正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP&
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
证明:连接BF交AE于点H(思路:我要证明OHBG是平行四边形则OG平行BHOH平行BH所在面ABEF)在三角形EAD中OH分别为DEAE的中点则OH平行且等于1/2AD(中位线定理)AD平行且等于2
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
1利用割补法,两个正方形重叠部分的面积为12、方法相同,面积是1
证明:∵ABCD正方形,∴∠DOF=∠COE=90°,OD=OC,∴∠OCE+∠OEC=90°,∵DG⊥CE,∴∠ODF+∠OEC=90°,∴∠OCE=∠ODF,∴ΔOCE≌ΔODF,∴OE=OF.
简单因为OBC和OCD为等腰三角形E为BC中点所以角OEC=90所以角OFC=360-270=90因为OCD与等腰三角形三线合一,F为CD中点
(1)、由BC=BD,CE=CG,∠BCE=∠DCG=90°+α,可证⊿BCE≌⊿DCG,得∠EBC=∠GDC;记BE与DC的交点为M,在⊿BMC与⊿DMP中,据∠EBC=∠GDC;∠BMC=∠DMP
如图:设大正方形边长为1,那么圆的直径也为1,则:(1×1):[1×(1÷2)÷2×2],=1:0.5,=2:1;故答案为:2:1.设大正方形边长为1,那么圆的直径也为1,根据“正方形的面积=边长×边
画展开图再问:再问:�ܰ��æô��再问:再问:��һ��?再答:�㻭��չ��ͼ�������ܹ��Ƴ�����再问:��һ��Ŷ��再答:�⣿再答:������再问:���黹Ҫ����ô��再问:
设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2
楼主题目是不是错了应该是DG=BE吧.(1)证明如下四边形ABCD、AEFG都是正方形,所以DA=AB,AG=AE,
证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.  
这题只要证明N为AB中点,就可得出那2个结论可以先设MC=a,DC=2a,MD=根号5a我用:√5a来表示令NC与MD交点为P,则CP=2√5a/55分之2倍根号5可求出MP=√5a/5然后ΔMPC相
当MPG为等腰三角形时:(1)PM=PG,且MPG=90°时,显然PGCM是正方形,因为∠DBA=∠GEB=45°∴DB∥MEMN∥CB(同垂直于AB)∴PM=GB=GC=BE=AB/2=1/2(2)
解对称理由如下连接AC,∵O是正方形ABCD的对称中心∴OA=OC,AB∥CD∴∠OAH=∠OCM∵∠AOH=∠COM∴△AOH≌△COM(ASA)∴OH=OM∴△AO
(3)作EH垂直BD于点H,因为BE是角DBC的平分线,角BCD=90,所以,EH=CE,BH=BC.由(1)、(2)可知,BE=DF=2DG=2根号2.设AB=X,CE=Y,则DH=BD-BH=X(
左边梯形ABCG面积为3/4a^2右边三角形GCE面积1/8a^2三角形ABE面积3/4a^2所以,阴影面积为1/8a^2
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG