如图正方形abcd中ab等于根3.点ef分别在ba,cd上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:44:59
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
V﹙ABCDEF﹚=V﹙D-AGFE﹚+V﹙F-GBCD=1.5×2×3/3+﹙3/4﹚×3×2/3=7.5希望采纳哦!
这题一定要用相似形吗?我觉得用圆直径的性质,以及三角形面积来证明最简单.如图,连PCBC是圆直径,所以角BFC=90度,即CF垂直于BP三角形BPC的面积=1*1/2=1/2这个面积又等于BP*CF/
(1)证明:∵∠ADC=∠PDQ=90°,∴∠ADP=∠CDQ.在△ADP与△CDQ中,∠DAP=∠DCQ=90°AD=CD∠ADP=∠CDQ∴△ADP≌△CDQ(ASA),∴DP=DQ.(2)猜测:
∵AD‖BE∴△ADF∽△EBF∵E是BC中点∴BE∶AD=BF∶FD=1∶2∵△DEF面积为2∴△BEF面积为1(高相同)∴△BDE的面积为3∴△BCD的面积=6∴正方形ABCD的面积=12选择B
EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9
再问:169是结果吗再答:是的再问:谢谢了
证明:延长cm与ba的延长线相交于点g因为abcd是正方形所以角mdc=角bcn=角bad=90度ab=dc=bcab平行dc所以角mdc=角mag角mcd=角mga因为点m是ad的中点所以dm=am
如果你还没有立体的概念,那你只要延长fa到hc上交于点o,则高为fo=(af+ao),s=(ef+hc)fo/2.如果这是立体图形,每一种bad角都对应有一个面积范围,没有固定值,但能求出最大和最小值
正确选项为(D).作BE垂直BP,使BE=BP(点E和P在BC两侧),连接PE,CE.则:∠BPE=∠BEP=45°;PE²=BE²+BP²=4+4=8;∵∠EBP=∠C
因为正方形ADGN的面积是8所以边长HD=4(正方形面积=1/2*对角线的平方)AB=CD=2又平行四边形ABCD的面积是4所以平行四边形的高是2梯形的高=平行四边形的高+BE=4上底=AB=2梯形的
过点D作AC的平行线,交BC的延长线于点E则四边形ACED是平行四边形∴DE=AC,AD=CE∵ABCD是等腰梯形∴AC=BD∴BD=DE∵AC⊥BD∴DE⊥BD∴△BDE是等腰直角三角形∵BE=BC
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
作FE垂直AP于E,连接PF.因为角BAF=角PAF,角B=角AEF=90度,AF=AF,所以,三角形ABF全等三角形AEF,所以,AB=AE,BF=EF.因为AP=AB+CP,所以,EP=CP;又P
(1)因PA垂直底面ABCD,所以PA垂直BD又因底面ABCD为正方形,所以BD垂直ACPA、AC是在平面PAC内因此BD垂直平面PAC(2)45度PA垂直底面ABCD角PAD为90度又因PA=AB,
给个图再问:再答:那个三角形再问:嗯再答:求哪个三角形的什么东西
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG
F是两对角线的交点吗?再问:是的再答:△DFC面积为20²/4=100△CEF面积为(1/2)×4×10=20所求阴影部分面积为100-20=80再问:10哪来的?再答:10是F点到BC边的
目测三角法,现行送上(O为CE,BF交点)修正完整版再问:这个题是初二初三的题,有没有容易理解的解法?比如说图形法,反证法等,谢谢再答:当然有,只是习惯了用计算,懒得添辅助线延长BF交AB于H可以证明