如图正方形abcd边长为a以直线AB为旋转轴
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:42:50
过E作EG⊥AC于G,∵E是AD中点,则AG=AC/4,连FG∴FG²=5/8∵⊿ADC⊥⊿ABC∴EG⊥FG∵正方形ABCD的边长为1,则AC=√2在RT⊿EFG中EG=√2/4∴EF
1.圆O分别与CD,BC切于点M,N,则OMCN为正方形,则∠OCM=45°,又∠ACM=45°所以A,O,C在同一直线上;圆A与圆O相切与P,则A,O,P在同一直线上(两圆相切,切点在两圆的连心线上
① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2  
二分之一的正方形面积把两个半圆的重叠部分割成两个弓形,补到阴影部分的凹面,即可构成一个三角形.\x0d而这个三角形的面积就是正方形ABCD的面积的一半.
如图,S1=π﹙2a﹚²/4-﹙2a﹚²/2=﹙π-2﹚a²S2=﹙π-2﹚a²/4阴影部分面积=S1+4S2=2﹙π-2﹚a²
“w472”:正方形的面积=a²空白的半圆部份面积=(0.5a)²×3.14÷2=0.3925a²空白的三角形部份面积=a²-a²×3.14÷4=a&
大圆面积=π*(a/√2)²=a²π/2正方形面积=a²小半圆面积=(1/2)*π*(a/2)²=a²π/8∴所求阴影部分面积=4*小半圆面积+正方形
如果你还没有立体的概念,那你只要延长fa到hc上交于点o,则高为fo=(af+ao),s=(ef+hc)fo/2.如果这是立体图形,每一种bad角都对应有一个面积范围,没有固定值,但能求出最大和最小值
(1)梯形ADGF的面积=12(GF+AD)×GD=12(a+b)•a=a(a+b)2(2)三角形AEF的面积=12×AE•EF=a(b-a)2(3)三角形AFC的面积=S□ABCD+S□AFGD-S
给你发个链接吧,人家答的
阴影部分面积=a²-1/4a²π=(1-1/4π)a²(一般写这个结果)=0.215a²(π取3.14写这个结果)
有的..因为面积四等分..设AE在AC中最短AF其次AG最长,AE=b,AF=c,AG=d面积四等分则b平方=(1/4)a平方c平方-b平方=(1/4)a平方即:c平方=(1/2)a平方d平方-c平方
图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB
虽然没看到图,不过也能做.A(0,0)B(3/2√2,3/2√2)C(3√2,3√2)D(-3/2√2,3/2√2)
A(0,0),C(0,6√2),B(3√2,3√2),D(-3√2,3√2).再问:边长是6再答:正方形的边长是6,则其对角线AC=6√2.因为,AC^2=AB^2+BC^2.=6^2+6^2.=36
这样的正方形ABCD有无限多个.(a,b可以取任何实数值!)
左边梯形ABCG面积为3/4a^2右边三角形GCE面积1/8a^2三角形ABE面积3/4a^2所以,阴影面积为1/8a^2
如图,过E作EI⊥CD于I则EI=1/2AD=1/2EC∴∠ECD=30°同理,∠FCB=30°∴∠ECF=30°∴弧EF=30°/180°*π*a=1/6aπ∴阴影部分周长为2/3aπ