如图点abc是圆o上的三点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:39:40
连接OA,∵圆O的圆周角∠ABC对弧AC,且∠ABC=30°,∴圆心角∠AOC=60°.又∵直线PA与圆O相切于点A,且OA是半径,∴OA⊥PA,∴Rt△PAO中,OA=1,∠AOC=60°,∴PA=
证明:连接OD、OE∵D、E分别是弧AB,AC的中点∴OD⊥AB,OE⊥AC∵OD=OE∴∠D=∠E∴∠DFB=∠EGC∴∠AFG=∠AGF∴AG=AF
取AB中点为M,CM是AB边上的中线,1/2(向量OA+向量OB)=向量OMOP=1/3(1/2向量OA+1/2向量OB+2向量OC)=1/3(向量OM+2向量OC)=1/3向量OM+2/3*向量OC
如图∵∠APC=∠CPB=60º,∴弧AC=弧BC,∴AC=BC,∠ACB=60º,因此⊿ABC是等边三角形,∴AB=AC;∠BAC=60º,在PC上截取PD=PA,连接
这个,楼主,图不清楚啊这个
(1)证明:连接OD,如图,∵OB=OD,∴∠ODB=∠OBD,∵∠ABC的平分线交AC于点D,∴∠OBD=∠DBC,∴∠ODB=∠DBC,∴OD∥BC,∵∠C=90°,∴∠ADO=90°,∴OD⊥A
连接OD、DE、DB,设⊙O半径为r,∵CD为⊙O切线,∴∠ODA=90°,∵BE为⊙O直径,∴∠BDE=90°,∴∠ADE=∠BDO,∵OB=OD,∴∠OBD=∠ODB,∵∠DAE=∠BAD,∴△A
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
AB²+AC²=BC²所以三角形ABC是直角三角形,斜边是BC过ABC的截面,即三角形ABC的外接圆,半径r=BC/2=5所以球心到截面的距离=√(13²-5&
当A、B、C三点如图1所示时,连接AB、BC,∵∠AOC与∠ABC是同弧所对的圆心角与圆周角,∴∠ABC=12∠AOC=12×150°=75°;当A、B、C三点如图2所示时,连接AB、BC,作AC对的
1)连接OB,AB//OC=
··再问:A0.5B1C1.5D2再答:B
由C点做一条直线CD并使CD过圆心O点交圆上于D点再连接DBCD过圆O的圆心故∠DBC为直角.又∠ABC于∠DBC是圆O上共用弧BC上的两角故∠ABC=∠DBC然推出sinA=sinD=BC:DC=3
设OA=R,AD=2RcosA,AB=3AD=6RcosA;AC=1.5R又AC/AB=cosAAC、AB代进去,cosA=1/2,A=60°B=30°
过点O做OD⊥AB,连接OA,OB因为OA=OB,所以D为AB中点,所以AD=a/2,角OAD=30°你应该知道在直角三角形中,若一个角为30°,那么斜边等于短直角边的两倍吧设短直角边为x,斜边就为2
2.连结OA,则角OAP=90度,角AOC=2角ABC=60度,角P=30度,OP=2OA=2.
AB是圆o的直径,C是圆o上的任一点∴∠ACB=90°∴BC⊥AC∵PA垂直与平面ABC,∴PA⊥BC∴BC⊥平面PAC∵BC⊂平面PBC∴平面PAC⊥平面PBC
稍候!如图所示:应是“圆O经过ABD三点”证明:连结OD,则OD为△ABC的中位线,则OD//EC,△AOD中,OD=OA,∴△ACE中,AE=EC
这个应该是向量吧?AB上方是不是还有一箭头?在三角形ABC中,AB/|AB|是指向量AB上的单位向量,也就是长度(模)为1个单位长度,方向和向量AB相同的向量,既然是这样,AB/|AB|+AC/|AC
AB>BC