如图点e分别是三角形abc的边bc ac上的点且AB=Ac,AD=AE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:20:33
在三角形ABC和三角形EDF中,D,E,F分别是三角形ABC的三边BC,CA,AB的中点,求三角形DEF相似三角形ABC

证明:D,E分别为BC,AC的中点,即DE为三角形ABC的中位线,则:DE/AB=1/2;同理可证:EF/BC=1/2;DF/AC=1/2.即DE/AB=EF/BC=DF/AC.故⊿DEF∽⊿ABC.

如图,D,E分别是三角形ABC的边BC,AB上的点,三角形ABC,三角形BDE,三角形ACD的周长依次为m,m1,m2

证明的是小于等于4分之5吧因为,∠1=∠2=∠3则,△ABC∽△EBD∽△ADC相似比=周长的比=m:m1:m2设,AC/BC=k则,m2/m=AC/BC=DC/AC=k解得,DC=kAC又,DC=B

如图,D.E.F分别是三角形ABC的边AB,AC,BC的中点,求证:三角形ABC全等三角形FED

(两三角形全等的概念为两个三角形除相似外,还要大小相等).根据题意分析图形知,AB∥EF,BC∥DE,AC∥DF;       由

已知D,E,F分别是三角形ABC中BC,CA,AB边的中点四边形DECF是菱形求证三角形ABC是等腰三角形

因为四边形DECF为菱形所以DE=CE=CF=DF因为D,E,F为三角形各边中点所以DE,DF为三角形中位线所以DE=1/2AC,DF=1/2BC因为DE=DF所以AC=BC所以三角形ABC为等腰三角

已知:D,E,F分别是三角形ABC的边BC,CA,AB的中点.求证:S三角形ABC=4S三角形DEF(过程具体)

连接AD∵D,E分别是中点∴S⊿ABD=½S⊿ABCS⊿BDE=½S⊿ABD∴S⊿BDF=¼S⊿ABC同理S⊿AEF=¼S⊿ABCS⊿CDE=¼S⊿A

如图点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE平行BA,DF平行CA求证∠FDE=∠A

DE平行BA,DF平行CA所以四边形AFDE为平行四边形所以∠FDE=∠A希望我的回答能够帮到你,顺祝愉快!再问:证明∵DE平行BA∴∠FDE=------()∵DF平行CA∴∠A-------()∴

如图所示,在三角形ABC中,D,E分别是边AC,BC上的点,若三角形ADB全等于三角形EDB全等于三角形EDc,

∵△ADB≌△EDB≌△EDC,∴∠ADB=∠EDB=∠EDC,∠DEC=∠DEB∠=A,又∵∠ADB+∠EDB+∠EDC=180°,∠DEB+∠DEC=180°∴∠EDC=60度,∠DEC=90在△

已知P是三角形ABC所在平面外一点,D.E分别是三角形PAB.三角形PBC的重心.

四边形PABC是空间四边形作AB、BC的重点M、N连接PM、PN(过D、E)易得DE平行且相等于2/3MNMN平行且相等于1/2AC所以DE平行且相等于1/3AC

如图,D.E.F分别是三角形ABC各边的中点,AH是三角形ABC的高,1.求证四边形DHEF是等腰三角形

DHEF是等腰三角形打错.   应该是  DHEF是等腰梯形.如图,DH=AB/2=DB.DF‖BC ,FE‖AB ∴∠FDH=∠

已知BD、CE分别是三角形ABC的两条高,垂足分别是D、E,连接D、E求证三角形ADE相似三角形ABC

BD、CE分别是三角形ABC的两条高,所以三角形ABD∽三角形AEC→AE/AD=AC/AB,AE/AC=AD/AB,又∠DAE=∠CAB→三角形ADE相似三角形ABC

在三角形ABC中,D,E,F分别BC,CA,AB的中点,点M是三角形ABC的重心

如图:1.向量运算的平行四边形法则      2.重心的性质, 1:2可得答案 A

如图,d,e分别是三角形abc的边bc和ab上的点,三角形abd与三角形acd的周长相等,

设AE=xBD=y由题意BC=aAC=bAB=c△ABD周长=△ACD周长=>c+y=b+(a-y)=>2y=a+b-c=>y=(a+b-c)/2=BD△CAE周长=△CBE周长=>b+x=a+(c-

如右图,D,E分别是三角形ABC的边AC,BC的中点,三角形ABC的面积是24平方厘米,阴影

因为 D,E是AC,BC的中点,所以 三角形ABD面积=三角形CBD面积(等底同高的两个三角形,面积相等)           =三角形ABC面积的一半           =12平方厘米,   三角

已知如图.D,E分别是AB,AC边的中点求证△ADE∽三角形ABC

帮你找到原题了,真的一模一样http://www.qiujieda.com/math/167482/以后遇到初中数理化难题都可以来这个网站搜搜寻找思路,题库超大,没有原题也有同类题,界面很科学哦,也可

已知D.E分别是三角形ABC的AB与AC边的中点试说明三角形ADE的面积等于三角形ABC的面积的四分之一

∵DE是△ABC的中位线∴DE=BC/2并且DE‖BC做BC边的高AF交DE于G点∵DE‖BC∴AG⊥DE△AGE∽△AFC(三个角对应相等)∴AG:AF=AE:AC=1:2面积△ADE=DE*AG/

如图,三角形ABC的面积是1,D,E,F分别是相应边的三等分点,三角形ADO的面积是_______.

∵AD/AB=AE/AC=1/3,∴DE∥BC.∵CE/CA=CF/CB=2/3,∴EF∥AB.∴四边形DEFB是平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴S△ADE/S△ABC