如图直线l1平行l2三角形abc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:54:17
过A作AM⊥L3,过C作CN⊥L3,可得ΔABM≌ΔCBN,∴BM=CN=4,∴AB=√(3^2+4^2)=5,∴AC=√2AB=5√2.再问:虽然我做出来了但还是谢谢,答案是根号50再答:√50=√
过顶点B作l1,l3的垂线交l1,l3于F,E点,从C作CD⊥l1,交于D点,则四边形CDFE是矩形,设BC=x,CE=y,AF=z,根据勾股定理,9+y^2=x^2.(1)4+z^2=x^2.(2)
设L2与三角形ABC交于D点,设CB长为x那么AB=x,因为L1、L2的距离为2,L2、L3的距离为3,则有AD=2X/5,DB=3X/5三角形BCD中CD为斜边,且CD^2=BC^2+BD^2=X^
(1)∠1+∠2=∠3;理由:过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠5,∵∠4+∠5=∠3,∴∠1+∠2=∠3;(2)同理:∠1+∠2=∠3;(3)同理:∠1-
答案:∠2=∠1+∠3证明:从P点作L1、L2的平行线L3,交CD于点O则:∠2=∠CPO+∠DPO∵L1∥L2∥L3∴∠1=∠CPO,∠3=∠DPO∴∠2=∠1+∠3(2)如果点P在A,B两点之间运
好吧,认真算了下,第一问算得根号26,第二问算得1/2.1,貌似楼主你的图画错了,所以过点B做L1的垂线EF交L1,L3分别于点E,F,所以EF=2+3=5,因为L1‖L2‖L3,过点C做直线L1的垂
过A,C做垂线,证全等,AC=2根号17
过A作AM⊥于L3,过C作CN⊥于L3.易得:△CBN≌△ABM∴CM=3+4=7BM=AN=4∴CB^2=CM^2+BM^2=49+16=65∴CB=根号65∴三角形abc面积为根号65*根号65*
/>过点A、点C分别做L3的垂线,交L3于E、F,形成2个新的三角形,△AEB和△BFC利用三角形内角和是180°,以及直线是180°,∠FBC是公共角,从而证明∠ABE=∠BEF又因为AB=BC,从
(1)作PE平行l1,l2所以∠1=∠CPE,∠2=∠EPD因为∠3=∠CPE+∠EPD所以∠3=∠1+∠2(2)不发生变化(3)①当P点在A的上方时,作PF平行l1,l2所以∠1=∠FPC,∠FPD
过点B做BD,BE分别垂直于L1,L2由题意得,△ABD全等△CBE∴AD=BE=6∴AB=根号下(BD^2+AD^2)=2根号下10又∵△ABC为等腰RT三角形∴AB:AC=1:根号2(这步用勾股定
过A作EF垂直相互平行的三条直线l1,l2,l3和l1交于E和,l3交于F,过C作CD垂直相互平行的三条直线l1,l2,l3和,l3交于D,角B=90度,AB=BC,△ABF≌△BCD故BF=CD=1
分直线L1、L3在L2同侧或异侧两种情况考虑,每种情况又分点B在L1、L2、L3上的情况,故共有六种不同情况,但AC只有5个不同的值
过A作AD⊥l3于D,过B作BF⊥AC于F,过C作CE⊥l3于E,则BF的长就是点B到AC的距离∵AD⊥l3,CE⊥l3,∴∠ADB=∠ABC=∠CEB=90°,∴∠DAB+∠ABD=90°,∠ABD
证明:∵l1∥l2,∴点E,F到l2之间的距离都相等,设为h.∴S△EGH=1/2GH•h,S△FGH=1/2GH•h,∴S△EGH=S△FGH,∴S△EGH-S△GOH=S△
(1)∠1+∠2=∠3.∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3.(2)①过A点作AF∥BD,则AF∥BD∥CE,
由S△AOB=5/3,点A(-1,2),可求得点B的坐标;利用两点式,求斜率等,从而直线的解析式可求.由题意,令点B的坐标为(m,0)∵S△AOB=5/3,点A(-1,2),∴1/2×(-m)×2=5
过B点做一条平行与l1的直线可得角2=角1+90度=120度,希望采纳.
图④:∠1+∠2+∠3=360°,图⑤:∠1=∠2+∠3,图⑥:∠2=∠1+∠3.