如图直线l与半径为4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:09:45
(1)0A为12∠0AC=60°根据勾股定理得OC=12√3∴得C(0,12√3)把C(0,12√3)A(12,0)带入Y=KX+B得直线L的解析式为Y=-(根号3)-(12根号3)(2)平移相切后O
在这条直线上任取两点分别过这两点做l直线的垂线找出新的两个点距离为0.9cm的连接着两点并延长即可
1条,C平行的结果是把一条直线移动能够和另一条完全重合,只有C满足,另三条都是相交如有帮助请采纳,祝学习进步!
(1)∵OC⊥AB,∴AH=1/2AB=, 在RTΔOAH中,OA=10,AH=8 ∴OH=√(OA^2-AH^2)=6,∴A(-6,8) 又C(-10,0),设直线AC解析式为:Y=kx+
(1)直线l:y=-x-2.当x=0时,y=-2;当y=0,时,x=-2,所以A(-2,0).∵C(0,-2),∴OA=OC,∵OA⊥OC,∴∠CAO=45°.(2)如图,设⊙B平移t秒到⊙B1处与⊙
1)P(x,3)其中x的取值范围在1到3之间2)直线OP的方程:3x-4y=0,点A(2,3)到直线OP的距离为6/5,这个距离大于圆A的半径,所以直线OP与圆A的关系是相离.
当直线与圆相切时则此时x最大,设切点为F,连FO即OP,在三角形中解得x最大为2倍根2则范围[0,2倍根2]
选(D)如上图所示.请把点B改成点A,便于理解.连接AB、AC、BD.作AE、BD、CF分别垂直于直线l,垂足分别为E、D、F.过点C作CH垂直于BD,垂足为H.在直角三角形CBH中,BC=b+c,B
1)点A的坐标可以通过令直线方程y=x-2^(1/2)中的y=0,来求得:为(2^(1/2),0);∠CAO的度数可从直线斜率来求得为45度,2)当圆B与圆O相切时,两圆的中心距为两圆半径之和,即2^
加我QQ1261359653发一图来这种题无图解不出再问:很简单的图,就一直线在平面坐标内,另一根与其平行,第一根与x,y轴有两交点,自己能画
⑴OC⊥AB,∴AH=1/2AB=8,在RTΔOAH中,OA=10,AH=8,∴OH=√(OA^2-AH^2)=6,∴A(-6,8),又C(-10,0),设直线AC解析式为:Y=kx+b,得方程组8=
本题所说的两圆相切,应分为两圆第一次相遇时的相切和两圆继续移动,即将相离时的相切两种情况.第一种情况两圆所走的路程为4-2=2cm;第二种情况两圆所走的路程为4+2=6cm.不妨设圆A运动的时间为x秒
好吧,回答一下把分记得给我,两点间距离公式化成的等式化到最后Acosθ+Bcosθ=f(t)正负根号下A^2+B^2就是f(t)的值域然后再算出t的定义域
设OE垂直于AB于点E所以E为AB中点又因为AB=8所以AE=4所以在RT三解形OAE中由勾股定理OA的平方=AE的平方+OE的平方OE=3所以OA=5所以半径=5一共有3个点.直线把圆分为两部分,一
1.P在圆A上时,P1(2,3);P2(6,3)2.P的横坐标12,P(12,3)连接OP,以A点做一条垂直线于OP交与D点,L与Y轴交于C点已知CP=12,OC=3,利用勾股定理c(斜边)^2=a^
假设运动到E点时,⊙C与直线l相切,切点为F,则EF=1.5(圆的半径).各点坐标如下:A(3,0),B(0,-4),在三角形OAB中,OA=3,OB=4设角OBA为D则tgD=3/4,sinD=3/
连接O2B,O1A,作O2D⊥O1A.∵直线l分别与⊙O1、⊙O2相切于A、B,∴O1A⊥l,O2B⊥l,又∵O2D⊥O1A,∴四边形DABO2是矩形,在直角三角形O2DO1中,O2O1=4+1=5,