6的n次方是收敛的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:39:25
对∑(0,+∞)(n+1)x^n逐项积分得:∫∑(0,+∞)(n+1)x^ndx=∑(0,+∞)∫(n+1)x^ndx=∑(0,+∞)x^(n+1)=x/(1-x)|x|
@满足不等式@>3/2因为根号下(2n+1)/根号下n的极限是根号2,也就是说他们是同阶的,原级数收敛等效于级数1/n^(@-1/2)收敛因为级数1/n^p当p>1时收敛,所以有@>3/2
不是收敛的因为若该数列收敛,则其任一子数列收敛,而事实不是这样,下面证明.-1的2k次方是该数列一子数列,其极限为1-1的2k+1次方也是该数列一子数列,其极限为-1两子数列极限不同,故不收敛
判断是否收敛就是判断它在n趋近于无穷大时是否有极限极限(6^n-5^n)/(7^n-6^n)在n→∞时,若极限存在,那么它收敛.对原式分子分母都除以7^n,则分子为无穷小,分母为1减去无穷小所以原式在
对(n+1)!用斯特林公式,得到级数绝对收敛
只需要求后一项与前一项的比值:为(n+1)^(n+1)*(n!)^2/[n^n*(n+1!)^2]=(n+1)^(n-1)/n^n=【(n+1)/n】^n*【1/(n+1)】lim【(n+1)/n】^
先判断是否绝对收敛,如下:
利用泰勒级数展开就很容易求解了e^x=1+x+x^2/2!+x^3/3!+……+x^n/n!+……所以你的问题值为e^a,另外可以记住几个常用的泰勒展示e^x=1+x+x^2/2!+x^3/3!+……
设部分和数列为Sn则S[2k]=Σ-1/[(2k)(2k-1)]收敛S[2k-1]=S[2k]-(-1)^n/n收敛从而Sn的奇数子列和偶数子列收敛到同一个值所以Sn收敛即原级数收敛
∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能
R=a(n-1)/an=n/(n-1)=1;当x=-1时,是交错级数,极限->0x=1是时,是调和级数,不收敛所以[-1,1)是收敛域
当x=0时,级数化为∑(-1)的n次方/n,为收敛的交错级数.而x=2时,级数化为∑(1/n),为调和级数,发散.可知此幂级数的收敛半径为1,即|x|
第二个收敛因为分母是3次方A只是一次方那也没事的,三次方开平方就是3/2次方大于1,所以是收敛的,判断很简单吧,
记通项为an,则lima(n+1)/an=e/a,因此a>e级数收敛,a
你这三个题做起来要写不少内容的:1.收敛2.当a>1时收敛,当a
条件收敛收敛K>1发散再问:亲,你确定不?
对于任意ε>0令N=[1/ε]+1>1/ε则对于任意n>N|-1/n|=|1/n|再问:您好,谢谢你!是不是这样的解法适用于所有的负值的式子呢?还有就是这样的解法在哪里有?我想进一步了解!谢谢您!再答
a[n+1]/a[n]={1/2^[(n+1)/2]}/[1/2^(n/2)]=1/2^(1/2)
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/