实现x1服从[0,1]均匀分布matlab代码

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:13:18
关于概率论的2道题目1、设随机变量X1,X2,…Xn相互独立,且X1,X2,…Xn都有[0,a]上服从均匀分布,记U=m

这两题貌似很难的,在我们学校的论坛上见过,有牛人回答出了:第一题:U的概率分布FU(u)=P{U

设X1,X2,X3为相互独立的随机变量,且都服从(0,1)上的均匀分布,求三者中最大者大于其他两者之和的概率.

(X1,X2,X3)在立体区域0x1+x2}的概率之和.且由对称性不难看出这三个事件的概率是相等的.而概率P{x3>x1+x2}就是由平面x3=x1+x2,x1=0,x2=0,x3=1这四个平面所围立

一道概率题设随机变量X1,X2,...Xn相互独立,且都服从(0,1)上的均匀分布.求U=max{X1,X2...Xn}

想法:考虑能否求出U的分布函数,进而求其数学期望设F(y)是U的分布函数由定义:F(y)=P(U

设随机变量X1,X2,…Xn相互独立,且都服从(0,1)上的均匀分布.问:(1)求U=max{X1,X2,…Xn}数学期

所有关于min、max这种题都有一个固定的下手点,就是U≤u→X[1]、X[2]…X[n]里面最大的都小于等于u→每个X[1]、X[2]…X[n]都小于等于u每个都小就可以通过独立事件的概率乘法公式计

设随机变量X1,X2,…Xn相互独立,且都服从(0,θ)上的均匀分布.求U=max{X1,X2,…Xn}数学期望

具体过程如图,点击可放大:再问:谢谢您!好棒的!希望以后还可以请教您问题!再问:请问你可以帮我解答这个问题吗?再问:

设随机变量X在[0,1]上服从均匀分布,Y在[2,4]上服从均匀分布,且X与Y相互独立,则D(XY)=

均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/

二维随机变量X,Y服从(0,1)均匀分布,求Z=MAX(X,Y)

F(X)=(X-0)/(1-0)=x/1=xF(Y)=(Y-0)/(1-0)=y/1=y以上是两个均匀分布的分布函数F(Z)=F(MAX(X,Y))=1-(1-F(X))(1-F(Y))=1-(1-X

概率论,X,Y相互独立,且都服从[0,1]上的均匀分布

选AA选项:既然xy相互独立且均匀分布,那么(x,y)也服从区域[0,1]的均匀分布就好比你用铅笔在[0,1]这条直线上随意划点和你在边长为1的正方形内随意划点,他们都是均匀分布的B选项明显不对,当x

概率论 设X1,X2均服从[0,4]上的均匀分布,且P{X1≦3,X≦3}=9/16,求P{X1>3,X2>3}

1/16再问:详细过程,再问:我不会解这个再问:能不能写载纸上拍给我再答:画个图就行啊一个边长为4的正方形利用几何再问:......不回再问:不会再问:帮个忙,做下呗,实在不会这个再答:再答:看得懂吗

一道概率论题目设总体X服从(0,θ)上的均匀分布,从X中抽取容量为1的样本X1,则θ的无偏估计量是()A.U=X1,B.

注意EX1=EX=(0+θ)/2=θ/2(均匀分布的数字特征),所以有E(2X1)=θ,故选B

变量X1,X2,..,Xn互相独立且都服从(0,1)上的均匀分布,求U=max{X1,X2,..,Xn}和V=min{X

所有关于min、max这种题都有一个固定的下手点,就是U≤u→X[1]、X[2]…X[n]里面最大的都小于等于u→每个X[1]、X[2]…X[n]都小于等于u每个都小就可以通过独立事件的概率乘法公式计

设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为

D(x1)=3D(x2)=22D(x3)=3D(Y)=D(x1)+4D(x2)+9D(x3)=3+88+27=118如有意见,欢迎讨论,共同学习;如有帮助,

设X与Y是相互独立随机变量,X服从均匀分布U[0,1/5].

1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0

设随机变量x服从【0,1】上均匀分布,求Y=e^x的概率密度!

FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0

matlab求概率用matlab怎么写程序呀:x1服从区间(2,8)上的均匀分布,x2 服从N(2,1)正态分布,x3服

%%MonteCarlo方法Len=1e6;x1=2+rand(1,Len)*6;x2=2+randn(1,Len);x3=exprnd(3,1,Len);x=x1+x2.^2+x3.^2;count