1 x2 3x 2 展开成x的幂级数收敛域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:44:16
求f(x)=arctan(2(x-1)/(1+4x))展开成x的幂级数

最后给出前25项的系数的数值:-ArcTan[2],2,0,-8/3,0,32/5,0,-128/7,0,512/9,0,-2048/11,0,8192/13,0,-32768/15,0,131072

将函数展开为幂级数将函数f(x)=1/(x²+x-2)展开成X的幂级数

f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2

将函数f(x)=1/(x^2+3x+2)展开成x的幂级数

f(x)=1/(x^2+3x+2)=1/(x+1)-1/(x+2)=1/(x+1)-(1/2)/(1+x/2)=∑(n=0,+∞)(-x)^n-(1/2)∑(n=0,+∞)(-x/2)^n|x|

将f(x)=1/(x∧2-4x-5)展开成x的幂级数

提示:先把f(x)写成:f(x)=-1/6*1/(1+x)-1/30*1/(1-x/5)1/(1+x)和1/(1-x/5)会展开吧.

函数展开为x的幂级数f(x)=d((e^x-1)/x)/dx 怎么展开成幂级数,具体过程是怎么样的?

按泰勒级数展开e^x=1+x+x^2/2+...+(x^n)/(n!)(n从0到无穷大)∴e^x-1=x+x^2/2+x^3/6+...+(x^n)/(n!)(n从0到无穷大)∴(e^x-1)/x=1

把函数展开成x的幂级数,

f(x)=(cosx)^2=(cos2x+1)/2=cos2x/2+1/2=(i从0到正无穷){(-1)^i【(2x)^(2i)】/(2i)!}/2+1/2=(i从0到正无穷)(-1)^i*2^(2i

将f(x)=arctan[(1+x)/(1-x)]展开成x的幂级数

这是因为等比数列的公比不同1/(1-x)=1+x+x^2+...+x^n+...1/(1+x)=1-x+x^2+...+(-1)^n*x^n把第二式x换成x^2就可以了

(sinx)^2展开成x的幂级数

你是错的!原式=(1-cos2x)/2=1/2-∑1/2((2x)^2n)/(2n)!(-1)^n=1/2-∑2^(2n-1)(x^2n)/(2n)!(-1)^n))=-∑2^(2n-1)(x^2n)

将f(x)=ln(1+x)/(1-x)展开成x的幂级数

一般的,f(x)在x=x0处展开成幂级数为:f(x)=f(x0)+f(x0)'(x-x0)+f(x0)''(x-x0)²/2+f(x0)"'(x-x0)³/3!+……+f(x0)(

高数的,f(x)=(1-x)ln(1+x)展开成x的幂级数

令g(x)=ln(1+x),g(0)=0;[ln(1+x)]'=1/(1+x),g'(0)=1;[ln(1+x)]''=-1/(1+x)^2,g''(0)=-1;[ln(1+x)]'''=2/(1+x

f(x)=(1+x)ln(1+x)展开成x的幂级数

f′(x)=ln(1+x)+1=[∑(n从1到∞)(-1)^(n-1)x^n/n]+1f(x)=∫(0到x)f′(x)dx+f(0)=∫(0到x){[∑(n从1到∞)(-1)^(n-1)x^n/n]+

将f(x)=1/(x^2+5x+6)展开成(x+1)的幂级数

可以利用已知的展开式进行计算,如图.经济数学团队帮你解答.请及时评价.谢谢!

将函数展开成x的幂级数

f(x)=(1-x)/(1-x)(1+x+x^2)(1-x)*[x^3+x^6+...+x^3n+...)]

将y=(x^3-2x)/(x^2+x-2)展开成x+1的幂级数怎么展开?

F(X)=3/(X^2+X-2)=1/(X-1)-1/(X2)=-1/(1-X)-1/2*1/(1+X/2)函数1/(1-x)和1/1+x是一个公式,以及所述第二开关的xx/2.代入公式即可.收敛区域

(1+x)ln(1+x)展开成x的幂级数,

ln(1+x)=∫[1/(1+x)]dx=∫(1-x+x^2-x^3+……+x^n+……)dx=x-(x^2/2)+(x^3/3)-(x^4/4)+……+[(-1)^(n+1)](x^n/n)+……(

展开幂级数f(x)=x/1+x-2x^2展成X的幂级数

f(x)=(1/3)*[1/(1-x)-1/(1+2x)]这样就变成两个等比级数的差一个首项是1/3,公比是x,另一个首相是1/3,公比是-2x下面就简单了f(x)=[(1/3)+(1/3)x+(1/

lnx/(1+x)幂级数展开

lnx在x=0无定义,故不能展开成x的幂级数再问:利用幂级数展开求其从0到1的积分

将函数1/(2-x)展开成x的幂级数

解题过程请看附图.

x/√1-2x展开成x的幂级数

提示:有个公式:(1+x)^α=1+αx+α(α-1)x^2/2!+α(α-1)(α-2)x^3/3!+.在上面展开式中,你用-1/2代α,用-2x代x,最后各项再乘以x就行了.