将sin的平方x用间接法展开成x的幂级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:19:00
f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2
f(x)=1/(2+x-x的平方)因式分解={1/(x+1)+1/[2(1-x/2)]}/3展开成x的幂级数=(n=0到∞)∑[(-x)^n+(x/2)^n/2]收敛域-1
看图片,有问题的话可以反馈
X-x^3/3!+x^5/5!-……再问:幂级数的展开式好难,我连最基本的e^x,sinx都展不来,有什么技巧吗?
参考http://zhidao.baidu.com/question/538153965.html?from=pubpage&msgtype=2
原式=(2sinxcosx)cosx+sin²x=2sinx*cos²x+sin²x=2sinx*(1-sin²x)+sin²x=-2sin³
先将展开成部分分式f(x)=-1/3*1/(1-x)+2/3*1/(1+x)那么1/(1-x)和1/(1+x)会展开吧下略x/(x^2+x-2)=-(x/2)-x^2/4-(3x^3)/8-(5x^4
2-x,x*2,(2-x)/2是多项式函数,它们的幂级数等于自身,无非是改写成在哪点的展开式形式而已.但x+√(x^2+1)在不同点展开,必须结合已知公式做调整.再问:你的意思是x+√(x^2+1)不
(arctanx)'=1/(1+x^2)=∑(-1)^n*x^(2n),-1<x<1.arctanx=∑(-1)^n*x^(2n+1)/(2n+1),-1≤x≤1.xarctanx=∑(-1)^n*x
f(x)=1/(x-2)(x-3)=1/(x-3)-1/(x-2)=-1/(1-x/3)+1/(1-x/2)=-[1+x/3+x^2/3^2+...]+[1+x/2+x^2/2^2+...]=x(1/
拆项,利用已知的展开式.经济数学团队帮你解答.请及时评价.再问:是展成(x-3)的幂级数哦_(:з」∠)_再答:不好意思,看错了,更正如图:
套用已知的展开公式.经济数学团队帮你解答.请及时评价.
将f(x)的导函数展开,再逐项积分即可到其展开式再问:那2sinxcosx怎么展开呢?再答:那不就是sin2x吗?
原始泰勒公式:sinx=x减六分之一x的三次方cosx=一减二分之一x平方分别将x替换为你需要的即可拉格朗日余项sin;R2n(x)cos;Rn(x)会了吧
首先你要明确泰勒展开在不同的前提设定下可以有不同的展开.就这个函数来说,对sinX可以先展开=sin(sinx)=sinx-(1/3!)(sinx)^3+(1/5!)(sinx)^5-(1/7!)(s
f(x)=(1-x)/(1-x)(1+x+x^2)(1-x)*[x^3+x^6+...+x^3n+...)]
F(X)=3/(X^2+X-2)=1/(X-1)-1/(X2)=-1/(1-X)-1/2*1/(1+X/2)函数1/(1-x)和1/1+x是一个公式,以及所述第二开关的xx/2.代入公式即可.收敛区域
解题过程请看附图.
形如(n=0到∞)∑anx^n=a0+a1x+a2x²+a3x³+…+anx^n+…或(n=0到∞)∑an(x-a)^n=a0+a1(x-a)+a2(x-a)²+a3(x