已知 如图 在菱形abcd中 f是bc上的一点,df交ac
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 02:41:14
作AM⊥BC于M,AN⊥CD于N易证AM=AN,∠MAN+∠C=180°又∠B+∠C=180°∴∠MAN=∠B=∠EAF∴∠EAM=∠FAN又AM=AN∴Rt△AEM≌Rt△AFN∴AE=AF
△AEF均为等边三角形,看看下面的截图!
(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).
由AB=BC=2BE(菱形邻边相等),角AEB=90度可知角BAE=30度.故角B=60度.其余三个角则可用平行四边形性质求,角D=60度,角BAD=角BCD=120度
第一问简单再答:再答:再答:
提示:图片不太清晰!学霸们无法解答.下次提问要注意图片质量哦.再问: 再问:刚才的那个图
证明:1、∵菱形ABCD∴AD=AB,∠B=∠D∵BE=DF∴△ADF全等于△ABE(SAS)∴AE=AF2、连接EF、AC∵菱形ABCD∴AB=BC=AD=CD,∠B=∠D∵∠B=60∴∠D=60∴
连AC,∵四边形ABCD是菱形,且∠B=60度,∴AC=AB=AD,∠D=∠B=∠ACB=∠DAC=60度∵∠EAF=60度∴∠DAF=∠CAE=60度-∠FAC因此△DAF≌△CAE∴AE=AF于是
因为菱形ABCD所以AC,BD互相垂直平分且平分一组对角又ON⊥AD,OM⊥BC,OE⊥AB,OF⊥DC所以ON=OM=OE=OF(角平分线性质定理)
连接AC,在正方形ABCD中AO=CO,BO=DO(正方形对角线互相平分)又因为:BF=DE,所以:BO-BF=DO-DE,即OF=OE.所以四边形AECF是平行四边形(对角线互相平分的四边形是平行四
证明:∵四边形ABCD是菱形∴AD//BC(菱形对边平行)∴∠B+∠BAD=180°∵∠BAD=2∠B∴3∠B=180°∠B=60°∵AB=BC(菱形邻边相等)∴△ABC是等边三角形(有一个角是60°
人在听么?再问:什么再答: 再答:懂不懂。?再问:第四行写的是什么再答:角BAF等于二倍的角B
在菱形ABCD中AB=BC,AD∥BC∴∠BAD+∠B=180°∵∠BAD=2∠B∴∠B=180°÷(1+2)=60°∴△ABC是等边三角形
设CE=x,则BE=4-x∵四边形ABCD是矩形∴ΔABE是直角三角形∵四边形AECF是菱形∴AE=EC由勾股定理得;AB²+BE²=AE²=CE²即2
(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1
证明:∵E、H分别为BD,BC的中点∴EH‖CD,EH=1/2CD同理可得FG‖CD,FG=1/2CD∴EH‖FG,EH=FG∴四边形EHFG是平行四边形同理可得FH=1/2AB∵AB=CD∴EH=E
∵ABCD是菱形∴AD=16÷4=4∵E,F分别是AC,CD的中点∴EF=1/2AD=2∴选B
(1)AB=AD,BE=AF,∠ABE=∠ADF,所以△ABE≌△ADF所以AE=AF(2)连接AC,BD,点E.F分别为BC.CD的中点,所以EF=1/2BD,又BD=√3AB,所以EF=√3/2A