已知,如图,AD=CB,∠1=∠2.△ADC与

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:32:55
如图,已知AB=AD,DC=CB,求证:∠B=∠D

证明:连接AC∵在△ABC、△ADC中:AB=AD,DC=BC,AC=AC∴△ABC≌△ADC(SSS)∴∠B=∠D数学辅导团解答了你的提问,理解请及时采纳为最佳答案.

已知:如图,E、F在AC上,AD∥CB且AD=CB,∠D=∠B.

证明:∵AD∥CB,∴∠A=∠C,在△ADF和△CBE中,∠A=∠CAD=CB∠D=∠B,∴△ADF≌△CBE(ASA),∴AF=CE,∴AF+EF=CE+EF,即AE=CF.

如图,已知AD||BC,AD=CB,证明△ABC≌△CDA.

AD||BC,AD=CB所以四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形)所以AB=CD(平行四边形对边相等)AC是平等四边形ABCD的对角线(公共边)又AD=CB所以,△ABC

如图,CD⊥AD,CB⊥AB,AB=AD,求证:CD=CB.

证明:连接AC,CD⊥AD,CB⊥AB,∴在Rt△ADC和Rt△ABC中,AD=ABAC=AC,∴Rt△ADC≌Rt△ABC(HL),∴CD=CB.

已知:如图,AD//CB,AD=CB.求证:△ABC≌△CDA.

由条件(就不再打一遍了啊)可知,ABCD是平行四边形所以AB=CD,又AD=CB,AC=AC由三边相等,可证明两个三角形全等

已知:如图,在四边形ABCD中,AB=AD,∠ABC=∠ADC.求证:CB=CD

连接BD,因为AB=AD,所以ABD=角ADB,又因为∠ABC=∠ADC,所以∠ABC-∠ABD=∠ADC-∠ADB,即∠CBD=∠CDB,所以CB=CD同学,如果我的回答帮到你了,请万忙之中抽出一两

已知:如图,四边形ABCD中,AD∥CB,AD=BC.

证明:∵如图,四边形ABCD中,AD∥CB,AD=BC,∴四边形ABCD是平行四边形,∴AB=CD,∠A=∠C.∴在△ABD与△CDB中,AD=CB∠A=∠CAB=CD,∴△ABD≌△CDB(SAS)

已知如图,AB=AD,CB=CD. 求证:∠B=∠D.

连接AC∵AB=AD,CB=CD,AC=AC∴△CDA≌△CBA(SSS)∴∠B=∠D

如图,已知AB=CD,AD=CB,∠B=25°,则∠D=?

25°连接AC易证△ABC≌△CDA(理由是三遍相等,边边边)所以∠B=25°=∠D

已知:如图,在四边形ABCD中,AB=CB,AD=CD,求证:∠C=∠A

你把AC连接起来根据你的题意,我们可以知道△ABC是等腰三角形,所以角BAC=角BCA△ABD也是等腰三角形,S所以角DAC=角DCA那么角A=角BAC+角DAC=角DCA+角BCA=角C

已知:如图,在四边形abcd中,ab=cb,ad=cd,求证∠c=∠a

证明:连接BD∵AB=CB、AD=CD,BD=BD∴△ABD≌△CBD(SSS)∴∠C=∠A数学辅导团解答了你的提问,再问:如图,已知点b是线段ac中点,且有db=eb,∠eba=∠dbc,求证ad=

如图,已知四边形ABCD中,AB=CD,AD=CB,是说明AB//CD,AD//CB

在△ABC和△CDA中∵AB=CD,AD=CB,AC=CA∴△ABC≌△CDA(SSS)∴∠BAC=∠DCA(全等三角形的对应角相等)∴AB∥CD(内错角相等,两直线平行)同理∴∠DAC=∠BCA(全

如图,已知AD//BC,AD=CB,△ABC与△CDA全等吗?为什么?

∵AD//BC,AD=CB∴∠DAC=∠ACB∵AC=AC∴△ABC与△CDA全等

如图,已知AD‖BC,AD=CB,AE=CF.求证:DF=BE

如图,------AB//CD,所以∠A=∠C.因为AD=BC,AF=AE+EF=CF+EF=CE,∠A=∠C,所以△ADF与△CBE全等(SAS),所以BE=DF.

如图,已知AE=CF.∠D=∠B,AD=CB,求证:AD∥BC

证:∵AE=AF+EF=FC=EF+EC∴AF=EC在△ADF和△CBE中∵AD=CB{AF=EC∠D=∠B∴△ADF≌△CBE∴∠A=∠C∵内错角相等,两直线平行∴AD∥BC本题得证注:证全等那里的

如图,已知AB=CD,AD=CB,O为BD上任意一点,过点O的直线分别交AD、CB于点M、N.试说明:∠1=∠2.

知AB=CD,AD=CB两组对边分别相等的四边形是平行四边形所以四边形ABCD为平行四边形AD平行于BC两条直线平行,内错角相等所以∠1=∠2.

已知:如图,AD平行CB,AD=CB,求证:三角形ABC全等三角形CDA

AD平行CB,AD=CB,求证:三角形ABC全等三角形CDA证明:∵AD∥BC,∴∠2=∠3,在△ABC和△CDA中,∠1=∠4AC=CAAD=CB,∴△ABC≌△CDA(边角边).