已知-1是可逆矩阵A的一个特征值,则2E A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:32:05
已知矩阵A,求可逆矩阵P,使PA为行最简形,P是唯一的吗

行最简形是唯一的当A可逆时,P唯一当A不可逆时,P不唯一

A是可逆矩阵B是可逆矩阵则A+B的逆是什么

A+B不一定有逆矩阵.=========设En为n阶单位矩阵.令A=En,B=-En.则A,B可逆.(A的逆为En,B的逆为-En).但A+B=O,不可逆.

线性代数题 已知是4阶矩阵,A*是A的伴随矩阵,若A*的特征值是,1 -1 2 4则不可逆的矩阵是

A*的特征值是1-124,A*的行列式是-8,所以A的行列式是-2.A*的特征值是1-124,(用到结论:A的特征值就是A的行列式除以A*的特征值),所以A的特征值是-2,2,-1,-1/2.所以A-

线性代数问题.已知n阶方阵A,B,A^2+AB+B^2=0,求证A为可逆矩阵的充要条件是B为可逆矩阵

原式右乘B的逆得A+B=-A^2*(B的逆)原式写成A(A+B)=-B^2……(1)两边同时左乘-B^(-2)得A+B可逆,其逆为-B^(-2)A

设λ=2是可逆矩阵A的一个特征值,则矩阵(13

设α是A的特征值2的特征向量,则Aα=2α又A可逆∴α=2A-1α,即A−1α=12α∴(13A)−1α=3A−1α=32α∴32是矩阵(13A)−1的一个特征值.

设n阶可逆矩阵A的一个特征值是-3,则矩阵(1/3*A2)-1 必有一个特征值为_________.

有如下定理:若可逆阵A有特征值k(k一定不为0)则A逆有特征值1/k,A^2特征值k^2.(mA)有特征值mk.(以上结论容易证明)由此,本题:A的特征值-3,A^2的特征值9,1/3*A^2的特征值

设x=2是可逆矩阵A的一个特征值,则矩阵(1/3A^2)^-1的一个特征值是多少?请具体证明?

2是A的特征值则2^2=4是A^2的特征值所以4/3是(1/3)A^2的特征值所以3/4是(1/3A^2)^-1的一个特征值再问:则2^2=4是A^2的特征值请证明这句话。再答:这不知道啊,这是教材中

帮我做一个线性代数的证明题:已知A是正交矩阵,A-I可逆,B=(A+I)(A-I)^-1 .证明B是反对称矩阵

证明:B^T=[(A+I)(A-I)^-1]^T=(A-I)^-1^T(A+I)^T----知识点1=(A-I)^T^-1(A+I)^T--知识点2=(A^T-I^T)^-1(A^T+I^T)=(A^

设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于?

如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^

矩阵 已知A可逆 B可逆 A+B可逆 求证A的逆+B的逆 可逆

因为A(A^(-1)+B^(-1))B=[E+AB^(-1)]B=B+A即(A^(-1)+B^(-1))=A^(-1)(B+A)B^(-1)因为A可逆,B可逆,A+B可逆所以得证.

设λ是n阶矩阵A的一个特征值,求证:若A可逆,则1/λ是n阶矩阵A-1;的一个特征值

λ是矩阵A的一个特征值,则存在非零向量X,AX=λX,故(1/λ)X=A^-1X,即A^-1X=(1/λ)X,1/λ是n阶矩阵A-1的一个特征值

设a是可逆矩阵A的一个特征值,则下列说法不正确的是

AB都是错的.A中,要排除零解.B中,应为正的1/aC中A*=|A|*A的逆故该特征值为此D中依特征值的性质若a是A的特征值则g(a)是g(A)的特征值可以得出

已知三阶方阵A的特征值是0.1.-1 则下列命题不正确的是:A方阵不可逆 B方阵与对角矩阵相似 C1和-1所对应的特征向

A正确,行列式为0,矩阵A不可逆B三个特征值,3个特征向量,相似C不同特征值对应的特征向量正交D,R(A)=2,齐次方程解的个数为1个,基础解系就是1个向量!您好,liamqy为您答疑解惑!如果有什么

已知λ=2是可逆矩阵A的一个特征值,则(1/2A^2)^-1有怎样的一个特征值

由已知(1/2)2^2=2是(1/2)A^2的特征值所以1/2是((1/2)A^2)^-1的特征值

设A是n阶可逆实数矩阵,证明A(AT)的特征根大于0.AT是A的转置矩阵

就是证明AA^T是正定阵即可.因为对任意的n维列向量x,有x^T(AA^T)x=(A^Tx)^T(A^Tx)>=0,且等号成立的充要条件是A^Tx=0,而A可逆,即A^T可逆,因此等号成立的充要条件是

n阶可逆矩阵A的一个特征值是5,则矩阵[(1/2)A2]-1次方 必有一个特征值是什么

可根据特征值的性质如图得到一个特征值是2/25.经济数学团队帮你解答,请及时采纳.

当矩阵A,B是可逆矩阵时,用定义验证B-1A-1是AB的逆矩阵.

AA-1=A-1A=EBB-1=B-1B=EB-1A-1AB=B-1(A-1A)B=E再问:没看懂,能解释详细一点儿吗?再答:B-1A-1AB=B-1(A-1A)B=B-1B=E再问:为什么要把B-1

已知A ,B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA是可逆矩阵.

只要找出一个非零解满足(E-AB)Y=0,就可以说明与题设矛盾,假设E-BA不可逆,则(E-BA)X=0有非零解,则可得X=BAX.又(E-AB)AX=AX-ABAX=AX-AX=0,即AX为(E-A