已知:如图,圆心O是△ABC的外接圆,弧AB=弧AC,点D

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:02:49
如图,已知AE是圆心O的直径,三角形ABC的三个顶点都在圆心O上,延长高AD交圆心O于F,连接BE,CF求证BE=CF

两个错误:1,“三角形ABC的三个顶点都在圆心O上”应说“……都在圆O上”.2,“高AD交圆心O于F,”应说“……交圆O于F,”.证明:连结EF,AE是直径,角AFE是直角,又因AD垂直于BC,所以B

如图,圆O是△ABC的内切圆,在AB AC 边各取一点D E,使AD=AE,且DE连线恰好经过圆心O.

证明:连结OB,OC,因为∠ADE=∠AED,所以∠ADE=(180°-∠A)/2=90°-∠A/2,所以∠BDO=180°-∠ADE=90°+∠A/2,所以∠DBO+∠DOB=90°-∠A/2,因为

(2014•永州三模)如图,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与

连接OD、DE、DB,设⊙O半径为r,∵CD为⊙O切线,∴∠ODA=90°,∵BE为⊙O直径,∴∠BDE=90°,∴∠ADE=∠BDO,∵OB=OD,∴∠OBD=∠ODB,∵∠DAE=∠BAD,∴△A

直线与圆的位置关系已知,如图,在△ABC中,∠ABC=90°,O是AB上的一点,以O为圆心、OB为半径的圆与AB交于点E

切割弦定理得AD^2=AE*ABAB=4BE=3R=3/2tanA=R/AD=3/4BC=ABtanA=3勾股定理算出AC=5CD=3S△BCD=1/2*BC*DC*sinC=9/2*4/5=18/5

如图,AB是圆的直径,O是圆心,OC垂直于AB,已知阴影部分的面积是25平方厘米.求三角形ABC的面积.

设半径OA=OB=OC=r则(πr^2)/2-{[π(√2r)^2]/4-r^2}=25r^2=25三角形ABC即为25平方厘米

如图,AB是圆的直径,O是圆心,OC垂直于AB,已知阴影部分的面积是25平方厘米.求三角形ABC的面积

没有图呀!再问:一个圆中间有一条直径为AB,有一条半径为oc,AB垂直于OC,AB上方有一条弧线,,弧线和三角形中间是阴影部分再答:不好意思,这两天忙,没来及上百度如图:按照楼主的描述,阴影部分实际是

如图,已知在三角形ABC中,AB=AC,O是BC的中点,以O为圆心的圆O切AB于D,问圆O与AC相切吗?

相切的.依题三角形ABC为等腰三角形,则AO垂直于BC,所以三角形AOB和AOC及圆O关于AO对称,所以相切

28.等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=900,⊙O的半径为1,圆心O与直线AB的距离为5.

△与○的相切,共有4次:第一次,为○在右侧与AC相切;第二次为○在右侧与AB相切;第三次为○在左侧,与AC相切;第四次为○在左侧,与AB相切(排序依据后面的详细计算)当第一次相切时,如图1所示:OE⊥

(2003•南昌)如图,已知在Rt△ABC中,∠B=90°,AC=13,AB=5,O是AB上的点,以O为圆心,OB为半径

(1)在Rt△ABC中;∵BC2=AC2-AB2=132-52=144,∴BC=12(1分);又∵∠B=90°,OB是半径,AB=5,OB=2.5,∴BC是⊙O的切线,点A在⊙O上,∴根据切割线定理有

如图,已知Rt△ABC中,∠B=90°,点E是BA延长线上的一点.以边AC上的点O为圆心、OA为半径的圆O与EC相切,D

第二题考虑一下圆,OD=OA,然后就行了,自己算吧,我也正在算第三题我不会写.~~~~(>_

圆与直线的位置关系如图,已知Rt△ABC中,∠B=90°,AC=13,AB=5,O是AB上的点,以O为圆心,OB为半径的

过O作AC垂线,垂足为D,有OBOD时,⊙O与直线AC相交;设OB=x,则AO=5-x,∵∠B=90°,AC=13,AB=5,∴BC=12∵∠A=∠A∠B=∠ODA=90°∴△ABC∽△ADO∴AO/

圆与三角函数如图,已知点O是Rt△ABC的直角边AC上一动点,以O为圆心,OA为半径的圆O交于AB于点D点,DB的垂直平

设OA=R,AD=2RcosA,AB=3AD=6RcosA;AC=1.5R又AC/AB=cosAAC、AB代进去,cosA=1/2,A=60°B=30°

=如图,已知△abc的三个顶点在以o为圆心的圆上,ad是△abc的高,ae是以o为圆心的圆上直径,求证ab×ac=ad×

连接BE∵AE为圆O直径∴∠ABE=90°∵AD为△ABC的高∴∠ADC=90°在△ABE与△ADC中,∠ABE=∠ADC,∠E=∠C(同弧所对的圆周角相等)∴△ABE∽△ADC∴AB/AD=AE/A

已知:如图,圆O是△ABC的外接圆,圆心O在这个三角形的高CD上,E、F分别是边AC和BC的中点,求证:四边形CEDF是

证明:∵AB为弦,CD为直径所在的直线且AB⊥CD,∴AD=BD,又∵CD=CD,∴△CAD≌△CBD,∴AC=BC;又∵E,F分别为AC,BC的中点,D为AB中点,∴DF=CE=12AC,DE=CF

已知,如图,o是△abc的

再答:不容易啊。找了张卫生纸给你写的。求采纳再问:enen再答:麻烦采纳啊亲再问:还有再答:先采纳。。咱一道一道来。做人要厚道再问:

(2007•昌平区一模)已知:如图,△ABC中,∠B=90°,O是AB上一点,以点O为圆心,OB为半径的圆切AC于点D.

(1)证明:∵∠B=90°,且OB为⊙O的半径,∴CB切⊙O于点B∵CD切⊙O于点D∴CD=CB(1分)(2)连接OD(如图1),由(1)得:BC=CD=3.在Rt△ABC中,AC=AD+CD=2+3

已知:如图,Rt△ABC,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E与AC切于D

连接OD则OD垂直ADOD=OE=ROA=1+ROD^2+AD^2=OA^2得:R^2+4=(1+R)^2R=3/2圆O的直径=2R=32.AB=AE+2R=4连结OC因为OD垂直AC则DC=AC-A

例3.在Rt△ABC中,∠ABC=90°,点O是BC边的中点,以O为圆心,OB为半径作⊙O.(1)如图1,⊙O与AC相交

解题思路:(1)连接OD、BD,根据圆周角定理得到∠BDC=90°,则E为Rt△ABD的斜边AB的中点,根据直角三角形斜边上的中线性质得到DE=BE=1/2AB,则∠EBD=∠EDB,由于∠EBD+∠

等腰Rt△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.

(1)假设第一次相切时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′于F.设⊙O与直线l切于点D,连OD,则OE⊥A′C′,OD⊥直线l.由切线长定理可知C′E=C′