已知:抛物线y=-x²+bx+c经过点A(1,0),C(0,-3)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:47:21
已知抛物线C1:y=ax^2+bx与抛物线C2:y^2=2px(p>0)关于直线x+y=1对称

抛物线C2:y^2=2px(p>0),此抛物线焦点坐标F2为:(p/2,0),抛物线C1:y=ax^2+bx,此抛物线焦点坐标F1为:[-b/2a,(4ac-b^2+1)/4a]∵抛物线C1:y=ax

已知抛物线y=3ax2+2bx+c,

2):用初中方法解第二问.a=b=1;--->y=3x^2+2x+cx=-1---->y=c+1;x=1----->y=c+5因为在-1-5c再问:因为在-1-500>0y为抛物线。则抛物线与x轴的交

已知:抛物线y=-3/4x^2+5/4bx经过点E(5,0)

(1)将E(5,0)代入抛物线y=-3/4x^2+5/4bx中-(3/4)*25+(5/4)*5b=0解得b=3(2)1.所以y=-3/4x^2+5/4bx=-(3/4)x^2+(5/4)*3x=-(

已知抛物线y=ax2+bx+c,请分别写出吃抛物线关于x轴,y轴对称的抛物线的解析式.

关于x轴对称的抛物线解析式y=-ax2-bx-c关于y轴对称的抛物线解析式y=a(-x)^2+b(-x)+c=ax^2-bx+c不明白可以继续追问,满意请采纳哈~

已知抛物线y=x平方+bx+c过原点,抛物线与x轴两交点间的距离为3,求抛物线的解析式

它过原点,则有C=0,它与X轴有两个交点,其中一个就是原点,另一个是(-b,0)|b|=3b=3,b=-3y=x*x+3x,y=x*x-3x

已知抛物线y=x²+bx+c过原点,抛物线与x轴两交点间的距离为3,求抛物线的解析式

过(0,0)0=0+0+cc=0y=x²+bx=x(x+b)=0x=0,x=-b所以两点距离是|-b-0|=3b=±3所以y=x²+3x或y=x²-3x

已知抛物线y=x2+bx+c过原点,抛物线与x轴两交点间的距离为3,求抛物线的解析式.

由过原点可得C=0和x轴的交点为(b,0)、(0,0)或(-b,0)、(0,0)这样就可以得到b=3或-3了

已知抛物线y=ax^2+bx+c过原点,抛物线与x轴两交点间的距离为3,求抛物线的解

等一下,我吃饭后写答案再问:他们说用什么维达定理再问:你吃到几点==再答:已知有点缺再问:可是题就是这样,学霸说简单,用韦达定理

在线等求大神已知抛物线y=ax^2+bx+c的对称轴是直线x=3,抛物线

再问:活捉学霸一只,一手好字各种羡慕0.0学霸跟我回家吧

已知抛物线y=-1/2x^2+bx-8的顶点在x轴上

解;你先配方:y=-1/2x^2+bx-8=-1/2(x^2-2bx+b^2)+b^2/2-8=-1/2(x-b)^2+b^2/2-8因为顶点(b,b^2/2-8)在X轴上,则:b^2/2-8=0b^

已知抛物线y=ax平方+bx+c

∵有最高点∴a<0①;∵最大值是4,∴(4ac-b∧2)/4a=4②;再代入(3,0)(0,3)得9a+3b+c=0③;c=3④;①②③④即可得解再问:我奇迹般的比你先做出来,不过还是谢谢你再答:呵呵

已知抛物线y=ax2+bx+c与y=−x

把(1,n),(m,1)代入y=x-2得n=1-2=-1,m-2=1,解得m=3,所以抛物线与直线y=x-2的交点坐标为(1,-1),(3,1),∵抛物线y=ax2+bx+c与y=−x22+3x−3的

已知抛物线y=ax2+bx+c,如图所示,直线x=-1是其对称轴,

(1)∵抛物线开口向下,∴a<0,∵对称轴x=-b2a=-1,∴b<0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∵抛物线与x轴有两个交点,∴△=b2-4ac>0;(2)证明:∵抛物线的顶点在x轴上

已知抛物线y=ax2+bx+c

解题思路:利用图象上的点满足函数关系式来求出解析式解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/

已知抛物线y=3x^2-bx+4的顶点在x轴上,那么b=____.

因为抛物线y=3x^2-bx+4的顶点在x轴上所以函数图像与x轴只有一个交点所以△=b²-4×3×4=0b²=48b=±4√3

已知抛物线y=x^2+bx+c与x轴只有一个交点

(1)因为抛物线y=x的平方+bx+c与x轴只有一个交点为A(2,0)所以Δ=b^2-4ac=0且A为抛物线的顶点所以顶点横坐标是2所以得方程组:{b^2-4c=0{-b/2=2解得:b=-4,c=4

已知抛物线y=ax2+bx+c的图象如图所示,

(1)∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴b<0;∵抛物线与y轴负半轴相交,∴c<0,∵抛物线与x轴交于两点,∴b2-4ac>0,∵x=-1时,y<0,∴a-b+c<0;(2)由函数的图

已知抛物线y=-x2+bx+c经过点A(0,4),且抛物线的对称轴为直线x=2 求该抛物线的解析式

答:(1)抛物线经过点A(0,4),代入抛物线方程得:c=4.抛物线的对称轴为直线x=2,代入抛物线对称轴方程:X=-b/2a,则,b=4,那么,抛物线的解析式为:y=-x2+4x+4..(2)要构成

已知抛物线y=-x的平方+bx+c经过点A(3,0),B(-1,0). 1、求抛物线的关系式 2、求抛物线的顶点坐标 (

1、将A、B两点坐标代入解析式得:-9+3b+c=0-1-b+c=0解方程组得:b=2,c=3可得函数解析式为:y=-x²+2x+32、将原函数解析式配方得:y=-x²+2x+3=