已知A,B为抛物线C上的两个不同的点,F为抛物线的焦点,若向量FA=-4FB,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 22:41:41
设A(x1,y1),B(x2,y2),C(x3,y3)F(1,0)向量FA+向量FB+向量FC=(x1+x2+x3-3,y1+y2+y3)=(0,0)所以x1+x2+x3-3=0,x1+x2+x3=3
1.设x²=2py,(p>0)P(X0,3)到焦点F(0,p/2的距离为4∴xo²=6p∴6p+(3-p/2)²=4²∴p=-14(舍),p=2抛物线C的标准方
可设切线方程为y-b=k(x-a)联立切线与抛物线.y=k(x-a)+b则[k(x-a)+b]^2-2px=0整理得k^2x^2-(2k^2a+2p-2kb)x+k^2a^2+b^2-2kba=0因为
再问:答案是4/3,没有负号k>0再答:哦哦哦,锐角锐角,太粗心了
抛物线y=ax²+bx+c经过点A(-2.7)B(6.7)纵坐标相同所以对称轴x=(-2+6)/2=2C(3.-8)关于直线x=2的对称点横坐标为,2*2-3=1,对称点坐标为(1,-8)
焦点为(1,0)分别过AB作x轴的垂线设B(1-x,-y)A(1+4x,4y)BF=根号((1-x-1)^2+y^2)得4x=2-y^2A为(3-y^2,4y)代入16y^2=4(3-y^2)y=1或
设抛物线方程为y2=2px,直线与抛物线方程联立求得x2-2px=0∴xA+xB=2p∵xA+xB=2×2=4∴p=2∴抛物线C的方程为y2=4x故答案为:y2=4x再问:���㵽��x1+x2=2P
答:① 焦点在x轴上,可设抛物线方程为:y² = 2px.可以判断焦点在(p/2,0)点.② 设A点坐标(x1,y1),B点坐标(x2,y2)
由抛物线的定义可得:|AF|+|BF|=x1+p2+x2+p2=x1+x2+p=8∴x1+x2=8-p.∵点Q(6,0)在线段AB的垂直平分线上,∴|QA|=|QB|即:(x1-6)2+y12=(x2
以Q点为圆心做一个半径为R的圆方程为:(x-6)^2+y^2=R^2当圆与抛物线相交时联立方程组得到(x-6)^2+2px=R^2他的两跟假设为x1,x2有x1+x2=12-2p因为|AF|+|BF|
设抛物线为y2=2px,A(X1,y1)B(x2,y2)则AF+BF=x1+x2+P=8①因为QA=QB所以(x1-6)²+y1²=(x2-6)²=y2²②yi
根据题意,抛物线可表达为y²=2px,p>0F(p/2,0),准线x=-p/2设A(a²/(2p),a),B(b²/(2p),b),C(c²/(2p),c)按抛
(1)a+b+c=0b=-a-c(2)若a<0,则抛物线必过第三象限,所以a>0B(-b/2a,4ac-b²/4a)由b=-a-c得4ac-b²/4a=-(a-c)²/4
y=4x焦点为(1,0)过焦点直线与抛物线交于AB两点.分别过AB作x轴的垂线,那么得到的两个三角形相似.FA的长度是FB的四倍假设B点坐标(1-x,-y)相似得到A点坐标(1+4x,4y)BF的长度
设A(x1,y1),B(x2,y2),抛物线y2=2px(p>0)的准线与x轴的交点C(-p2,0),焦点F(p2,0)∵FA+FB+2FC=0∴(x1-p2,y1)+(x2-p2,y2)+(-2p,
设A(x1,y1),B(x2,y2),抛物线y2=2px(p>0)的准线与x轴的交点C(-p2,0),焦点F(p2,0)∵.FA+.FB+2.FC=.0,∴(x1−p2,y1)+(x2−p2,y2)+
设A点坐标为(x1,y1)则B点坐标为(x1,-y1),设抛物线方程为y2=2px,则焦点F(p2,0)∵F为△AOB的垂心AF⊥OB,∴(p2-x1)x1+y12=0①∵A在圆上,∴x21+y21-
-b/2a=4,(4ac-b^2)/4a=2,0=4a+2b+c.a=-1/2,b=4,c=-6.
先设了一般方程,AF+BF全换到左准线的距离,就是中点的横坐标可以用P表示,再设直线AB方程KX+B,中点坐标就能写出来,然后中点和Q的斜率负倒数是K,再加AB在抛物线上面就能解了,过程自己做去