已知a=1,b=根号2,若向量a与向量b的夹角为60°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:46:49
|a+b|²=|a|²+2a*b+|b|²=1+2×1×√2×cos135°+(√2)²=3-2=1,则|a+b|=1
根号3乘以2分之1加上负1乘以根号2分之3等于0,所以这两个向量垂直
(1)向量a丄向量b∴√3sin2x+cos2x=02sin(2x+兀/3)=0x=兀/3(2)f(x)=向量a*向量b-1=√3sin2x+cos2x-1=2sin(2x+兀/3)-1X属于[0,兀
向量a-向量b与向量a垂直,则(a-b)•a=0,a^2=a•b,所以a•b=a^2=1.Cos=a•b/(|a||b|)=1/(1×√2)=√2/2.
|a|=√5,|b|=√5/2(a+2b)(2a-b)=2|a|²-2|b|²-ab=10-5/2+3ab=0∴ab=-5/2∴cos=ab/(|a||b|)=(-5/2)/(5/
设与a平行的向量b为(x,2x),x^2+(2x)^2=10,x=根号2故,向量b(根号2,2根号2)
设c(x,y)(a+b)*c=ac+bc=x+2y-2x-4y=-x-2y=5/2所以x+2y=-5/2(a+b)*c=ac+bc=5/2所以ac=5/2-bc=5/2-(-2x-4y)=5/2+2x
是a与b的夹角吧?|2a+b|=√7将它平方,得|2a+b|^2=74|a|^2+4a·b+|b|^2=7∵|a|=1,|b|=3∴4×1+4a·b+9=74a·b=-6∴a·b=-3/2∴cos=(
f(x)=向量a乘向量b=2sinx*√3cosx+(√2cosx+1)(√2cosx-1)=√3sin2x+2(cosx)²-1=√3sin2x+cos2x=2sin(2x+π/6)∴T=
因为|2a-b|^2=4a^2-4a*b+b^2=4[(cosa)^2+(sina)^2]-4(√3cosa+sina)+(3+1)=8-8sin(a+π/3)最小值为8-8=0,所以|2a-b|最小
(1)*向量b=|a||b|cos夹角=正负根号2(2)|a+b|²=|a|²+|b|²+2a*b=1+2+2|a||b|cos60°=3+根号2所以a+b的模=根号下(
设这个夹角是α则cosα=ab/a的模b的模=(2a+λb)(λa-3b)/a的模b的模=(2λa²-6ab+λ²ab-3λb²)/a的模b的模=(2λ2-6√2cos4
a·b=|a||b|cosx因为两向量平行所以cosX为1答案为1*根号2=根号2这么详细表太感动
向量a=(1,2),|向量a|=√5.注意到向量b=-2向量a(向量a+向量b)*向量c=5/2可化为:(向量a-2向量a)*向量c=5/2,-a*c=5/2,根据数量积的定义可得:-|a||c|co
因为a平行于b所以设a的坐标为(√3x,√5x)又因为a的模长为2所以(√3x)方+(√5x)方=2方解得x=√2/2代入得a的坐标为(√6/2,√10/2)
设:b=(x,y)则:a*b=2x+y=10|a+b|^2=(x+2)^2+(y+1)^2=50x^2+4x+4+y^2+2y+1=50x^2+y^2=45-2(2x+y)=45-20=25|b|^2
设向量c的坐标为(x,y)则x方+y方=2设为一式由已知得(根号3-1)x=(根号3+1)y设为二式联立的x方=1/(4-2根号3)=1/(根号3-1)方所以x1=1/(根号3-1),y1=1/(根号