已知ab是圆o的弦,cd是圆o的直径cd垂直于ab垂足为e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:45:03
参考:如图所示,已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C,若D为AD中点,求证:直线CD是圆O的切线证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对
∵弦AB=CD∴弧AB=弧CD∴∠ACB=∠DBC弧AB+弧AD=弧CD+弧AD即弧BD=弧AC∴∠ABC=∠DCB∵∠ACB=∠DBC,AB=CD∴⊿ABC≌⊿DCB﹙AAS﹚
过O作OG⊥CD于G∵O为圆心,CD为弦,OG⊥CD∴CG=DG(弦的过圆心垂线平分弦)又∵AE⊥CD,BF⊥CD∴AE‖BF∴OA/OB=EG/FG(相似)又∵OA=OB∴EG=FG又∵CG=DG∴
设AD与直径交点为G,GE=x,直径为2r,由相交线定理(2r-x)x=3*3=9(2r-x-1)(x+1)=4*4=16,2式相减:2r-2x=8,r-x=4,x=r-4所以由(2r-x)x=3*3
连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD
证明:因为AB、CD是圆O的直径,所以∠AOC=∠EOBAO=BOCO=EO△AOC≌△EOB所以AC=EB连接OD因为CD是圆O的弦,所以OD是圆O的半径因为CD∥AB所以OC=ODAO=BO∠AO
∵∠COD=120°CO=DO∴∠COE=∠DOE=60°又∵AB⊥CD∴∠C=∠D=30°又∵OD=8cm∴OE=4cm∴在RT△OED中ED=根号下OD²+OE²=根号下8
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
作OF垂直AB,则AB=BF=8.5,EF就是点O到CD的距离为4.5设秋千的固定点为A,最低点为B,最高点为C、D,连接CD交AB于O则OC=OD=4m,OB=1.3-0.3=1m,设秋千绳长为x,
1.证明:连接OC则OA=OC,OC⊥CD∴∠OAC=∠OCA∵AC平分∠DAO∴∠OCA=∠OAC=∠CAD∴AD‖OC∴AD⊥CD2.连接BC∵∠DAC=30°∴∠BAC=30°∵AB是直径∴∠A
/>连接OC,OD∵弦CD把圆O分成2:1的两部分∴∠COD=120°∴CE=2根号3∴OC=4∴圆O的直径=8∵∠C=30°∴OE=2∴AE=6或2
因为MN是ab的垂直平分线,所以MN过原点.又因为ab平行cd,所以MN垂直于cd.由垂径定理,MN垂直平分CD1.BM=AD.2.能保持.连接BO,因为A0为○c的直径,所以角ADC=90.由垂径定
证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线
证明:连接OD∵BD∥CO∴∠B=∠COA∵∠B=1/2∠DOA∴∠DOC=∠COA连接AD所以AD⊥BD∵BD∥CO∴∠OCD=∠BDE(E为CD延长线一点)∠DAB=∠BDE∠DAB+∠B=90°
设AB与CD相较于G点,过圆心O做CD的垂线,使OH垂直于CD,则由相似定理GH/HE=GO/OA=GO/OB=HG/FH,所以HE=FH,又由于CH=DH,所以CE=DF自己画图慢慢体会吧,不知道你
(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图
^2-(AB/2)^2=r^2-9r^2-(CD/2)^2=r^2-16根号(r^2-9)-根号(r^2-16)=1解得r=5
连接AO,BO,CO,DO.等腰三角形ABO,由等腰三角形三线合一知MN过圆心O.又MN垂直AB,AB平行CD所以MN垂直CD.等腰三角形CDO,由等腰三角形三线合一知MN就是CD的垂直平分线.
连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC
方法一: ∠CFD = ∠COA = ∠DOA =固定值=> ∠PFE = ∠DOE&nbs