已知AB是圆O的弦,且AB=2√3,圆O的半径为2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:07:21
∵弦AB=CD∴弧AB=弧CD∴∠ACB=∠DBC弧AB+弧AD=弧CD+弧AD即弧BD=弧AC∴∠ABC=∠DCB∵∠ACB=∠DBC,AB=CD∴⊿ABC≌⊿DCB﹙AAS﹚
很简单呐解:因为AB为直径且垂直CD所以CP=PD因为角APD=角CPB角B=角D所以三角形APD相似于三角形CPB所以AP比CP=DP比BP所以CP·PD=AP·BP即PC^2=PA*PB
证明:连接AC、BC则∠ACB=90°∵CP⊥AB∴弧BC=弧BD∴∠A=∠BCP∵∠CPB=∠CPA=90°∴△ACP∽△CBP∴CP/AP=BP.CP∴CP²=AP*PB
作OC⊥AB于C,则向量AB=2向量AC===>|向量AC|=|向量AB|/2=1∴向量AO*向量AB=2向量AO*向量AC=2[|向量AO|*|向量AC|*cos]=2[|向量AO|*|向量AC|*
你这题好像,说的不完整哟.比如,D为那里的任意一点是弦上?还是OC上?
连接OE,OM=OC/2=OE/2,OC垂直于AB,角OEM=30度.EF//AB,角AOE=角OEM=30度.[内错角]角EOC=90度-角OEM=90度-30度=60度.角CBE=角EOC/2=3
显然有:OA=OB,∴∠OAC=∠OBD.∵弧AE=弧BF,∴∠AOC=∠BOD.由∠AOC=∠BOD、∠OAC=∠OBD、OA=OB,得:△OAC≌△OBD,∴AC=BD.
分析:此题可以根据圆的旋转不变性证明;也可以构造到全等三角形中证明.OM=ON.理由:M,N分别为弦AB,CD的中点,由圆的对称性可知OM⊥AB,ON⊥CD.又AB=CD,所以OM=ON.点评:此题所
/>连接OC,OD∵弦CD把圆O分成2:1的两部分∴∠COD=120°∴CE=2根号3∴OC=4∴圆O的直径=8∵∠C=30°∴OE=2∴AE=6或2
做辅助线:连接OA\,OB,OC,OD,则有:OA=OB=OC=OD在三角形OAE和OCF中,OA=OC,OE=OF,角OEA=角OFC=90度,所以三角形OAE与OCF全等,所以AE=CF,同理可证
连接OB,作OM⊥AB与M,则BM=4,PM=2,在直角△OBM中,根据勾股定理得到:OM=3;在直角△OPM中根据勾股定理得到:OP=OM2+PM2=13.
1,易证DO//AC,因为DO为为三角形BCA两腰的等分线,所以由DE⊥AC→DE⊥DO,故DE是圆的切线.2,连AD,则AD是BC的中垂线,所以△ABD≌△ACD,所以∠ABD=∠ACD=30°,C
√【r²-(8/2)²】+√【r²-(6/2)²】=7r=5
AD=1AB=2所以角ABD=30AB=2AC=根号2所以角ABC=45DBC=45-30=15=CAD(同一弧的圆周角)
(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图
答;由题意可知.A.C.D三点在以B为圆心,a为半径的圆上.圆弧AC所对的圆心角是角ABC=60°.所对圆弧角是角ADC,则等于30°有因为角ADC等同于角ADE是以O为圆心的圆弧角,则圆弧AE对应的
如图:AB=8cm,且CD为园O的直径并且垂直于AB,得到AM=4cm,于是有OM的平方加上AM的平方等于AO的平方.OM=3cm,MD=OM+OD=8cm,AD的平方等于AM的平方加上MD的平方,得
根据直角三角形的特点,可得出∠cab=45°,∠dab=60°当d点和c点在ab同侧时,∠cad=60°-45°=15°当d点和c点在ab异侧时,∠cad=60°+45°=105°
第一题是(1)..第二题是(4)..第三题是(1)..第四题是(相等)..