已知A为三阶矩阵IAI=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:39:57
那么一个矩阵A=0,和一个矩阵A是一个0向量,这俩怎么理解?一个行列式IAI可知其运算值为0.

矩阵A等于0是说可以通过有限次初等变换,化成其中某一行或一列全为零.而矩阵A是0向量,就是元素全部都是0.那个r的就不清楚了,我只知道r(A*B)

A为三阶矩阵,已知detA=1/2,求det((3A)逆-2A星)

A逆=A星/|A|=2*A星故|(3A)逆-2*A星|=-4/3*|A星|=-1/3再问:答案是-16/27~不过谢谢啦再答:对不起我烦了低级错误:在将系数提出行列式符号后没有加上相应的次方应该是这样

已知三阶矩阵A的特征值为 -1,1,2,矩阵B=A-3A^2.试求B的特征值和detB.

因为B=A-3A^2所以2E+B=(E-A0(2E+3A)4E+B=(E+A)(4E-3A)10E+B=(2E-A)(5E+3A)又A的特征值为:-1,1,2所以det(2E+B)=0det(4E+B

已知三阶矩阵A的特征值为1,2,-1,设矩阵B=A-2A²+3A³,(1)求矩阵B的特征值及其相似对

设f(x)=x-2x^2+3x^3由于A的特征值为1,2,-1所以B的特征值为f(1)=2,f(2)=18,f(-1)=-6.所以B的相似对角矩阵为diag(2,18,-6).(2)|B|=2*18*

已知三阶方阵A的逆矩阵为1 1 1 1 2 1 1 1 3求伴随矩阵A*的逆矩阵

由于A(-1)=A*/|A|.A*=A(-1)|A|[A*](-1)=[A(-1)|A|](-1)由于|A|为一数值,所以左侧=[A(-1)](-1)/|A|=A/|A|.由于你的问题中A矩阵逆矩阵说

已知三阶矩阵A的特征值为-1,1,2,则|2A3-3A2|=______.

因为A的特征值为-1,1,2,所以f(A)=2A3-3A2的特征值为:f(-1)=-5,f(1)=-1,f(2)=4,从而|2A3-3A2|=(-5)•(-1)•4=20.故答案为:20.

已知A为3阶方阵,且IAI=3,求IA*I

知识点:|A*|=|A|^(n-1)所以有:|A*|=|A|^(3-1)=3^2=9.

已知三阶矩阵A的行列式为|A|=2,则|(2A)^-1-(3A)*|=?

(3A)*=|3A|(3A)^-1=18A^-1所以原式=|1/2A-1-18A^-1|=|-35/2A-1|=(-35/2)^3*(1/2)=(-35)^3/(16)额...好难算

已知三阶矩阵A的特征值为1,-1,2则行列式|A^2-2A+A*|=_____

这个答案是15吧我用两个方法算出来都是一个结果的啊刘老师算错了吧

已知三阶矩阵A的特征值为1,—1,2,设矩阵B=A3-2A2+3E,试计算|B|

三阶矩阵A的特征值为1,—1,2,而B为A的多项式,所以B有特征值1-2+3=2,-1-2+3=0,8-8+3=3故|B|=0

已知A.B都为有理数.且IAI-A=0,IBI+B=0化筒IAI-IBI-IA+BI

IAI-A=0,IBI+B=0化筒IAI-IBI-IA+BI所以A》0,B《0,所以:IAI=AIBI=-B当IAI》IBI,IA+BI=A+B当IAI《IBI,IA+BI=-A-B所以:IAI-IB

设A,B均为三阶矩阵,E是三阶单位矩阵.已知AB=2A+B,B=202040202

由:AB=2A+B,知:AB-B=2A-2E+2E,即:(A-E)B-2(A-E)=2E,也就是:(A-E)(B-2E)=2E,∴(A−E)•12(B−2E)=E,于是:(A-E)-1═12(B−2E

已知三阶矩阵A的特征值为2,-5,3,矩阵B=2A^3-A,求|A|,|B|

已知三阶矩阵A的特征值为2,-5,3,且三阶矩阵B=2A^3-A,那么B的3个特征值分别为2*2^3-2=14,2*(-5)^3-(-5)=-245,2*3^3-3=51.而三阶矩阵的行列式等于其3个

已知矩阵A={3.-1.0;0.4.5;2.1.2},B为三阶矩阵,且满足A^2+3B=AB+9I,求矩阵B

我先告诉你AC=BC时C不可以轻易约掉因为可变为(A-B)C=0当A不等于B(即A-B不等于0),C不为0时(A-B)C也可以等于0举个例子当A-B={100;010;001}C={011;101;1

已知三阶矩阵A的行列式为|A|=2,则|(2A)^-1 - (3A)*|=?

已知A为3阶方阵,且|A|=2,则|(2A)^(-1)-(3A)*|=?注:其中*写成上标的形式,表示伴随阵.下面乘法用·表示或省略.注意到:A*=|A|A^(-1),  |A*|=|A|^(n-1)

已知三阶矩阵A特征值为1 2 -3

对于矩阵函数f(A)来说,矩阵A有特征值a,那么f(A)就有特征值f(a)所以在这里,A有特征值1,2,-1那么B=f(A)=A^3-2A^2-A+2E那么特征值分别为f(1)=1-2-1+2=0f(

已知 IaI=7 ,IaI - IbI=2 且 Ia+bI= -(a+b),求a-b的值

知IaI=7,IaI-IbI=2且Ia+bI=-(a+b),求a-b的值Ia+bI=-(a+b),所以a+b≤0知IaI=7,IaI-IbI=2所以a=-7时b=-5或者5a=7时不满足要求a-b=-