已知be垂直ac于e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:03:50
已知,如图,BE=CF,BF垂直AC于F,CE垂直AB于E,BF和CE交于点D.求证AD平分角BAC.

∵BF⊥ACCE⊥AB∴∠BED=∠AED=∠CFD=∠AFD∵∠EDB=∠CDF∠BED=∠CFDBE=CF∴△BED≌△CFD∴DE=DF∵DE=DFAD=AD∠AED=∠AFD∴△AED≌△AF

角ABC BE 平分 角CBA 交AC于D CE 垂直于BE 于E 已知角A减角ACB=36度 求角ACE

角ACE=18°角A-角ACB=36°BD平分角ABC角ABD=角CBD(角A+角ABD)-(角ACB+角CBD)=36°(角A+角ABD)+(角ACB+角CBD)=180°(三角形内角和)则(角AC

已知,在三角形ABC中,角A=60度,AB=AC,BE垂直于AC于E,CF垂直于AB于F,点D为BC的中点,BE、CF交

因为:AB=AC角A=60度所以:三角形ABC为等边三角形角A=角B=角C=60度因为:BE垂直于AC角BEC=90度角C=60度(已知)所以:角EBC=30度三角形BEC为30度角的直角三角形所以:

如图,已知在三角形ABC中,AD垂直BC于点D,BE垂直AC于点E,AD=BD,求证:AF+DC=BD

角dac=ebc角adb=adcad=bd所以fbd和adc全等所以fd=dcaf+dc=af+fd=ad=bd

如图,已知三角形ABC中,AD垂直BC于点D,BE垂直AC于点E,AD=BD.求证AF+DC=BD

因为AD垂直BC,所以,角ABD=角ADC=90度,角C+角CAD=90度.因为BE垂直AC,所以,角C+角CBE=90度,所以,角CAD=角CBE.又因为BD=AD,所以,三角形FBD全等于三角形C

如图,CD垂直AB于点D,BE垂直AC于点E

因为ao平分∠bac,CD垂直AB于点D,BE垂直AC于点E.所以oe=od(角平分线定理)所以三角形aod全等与aoe,所以∠aoe=∠aod.所以由平角得到∠dob=∠eoc,再由全等定理得三角形

如图所示,已知CE垂直AB于E,DF垂直AB于F,AF=BE,AC=BD.求证:CE=DF

因为AF=BE所以AF-EF=BE-EF所以AE=BF又因为AC=BD且三角形ACE与三角形BDF都是直角三角形根据勾股定理可得CE=DF

如图所示,已知CE垂直AB于E,DF垂直AB于F,AF=BE,AC=BD.求证:AB∥BD

AB、AD交于A,相交线不平行.原题可收回.

如图,已知AB为圆O的直径,CD是弦,AB垂直CD于E,OF垂直AC于F,BE=OF

证明:在三角形ABC中,AB是直径,C是圆上的点所以角ACB=90,即BC垂直于ACOF垂直AC所以OF平行BC∵AB⊥CD∴CE=1/2CD=5√3cm.在直角△OCE中,OC=OB=x+5(cm)

已知AC平分角BAF,CE垂直AB于E,CF垂直AF于F,且CD=CB,为什么BE=DF

角BAF被AC平分,且CF垂直AF,CE垂直AE,于是根据这条定理:角平分线上的一点向两条角的边引垂线,两垂线相等,所以CF=CE.又CE=CD,且角CEB=角CFD所以根据直角三角形全等定理,三角形

已知:如图,AC平分角BAD,CE垂直AB于E,CF垂直AD于F且BE=DF.试猜想CD与CB有怎样

CD=BC在三角形ACF与ACE中,角1=角2,AC=AC,再加两个直角,两个三角形相似所以CF=CE,在三角形CDF与CEB中,又BE=DF,两个直角,两个三角形相似所以CD=BC

如图,已知AF平分角BAC,CD垂直AB,BE垂直AC,垂足分别是D,E线段DC,BE相较于F

证明:(1)∠DAF=∠EAF;∠ADF=∠AEF=90度;AF=AF.∴⊿DAF≌ΔEAF(AAS),故AD=AE.(2)AD=AE(已证);∠ADC=∠AEB=90°(已知);∠DAC=∠EAB(

如图,已知AD=CB,BE垂直AC于点E,DF垂直AC于点F,BE=DF,求证;AD//BC.

AD=CB,BE=DF,所以RT△ADF≌RT△CBE,所以∠DAF=∠BCE,∴AD//BC.

如图,已知AB=AC,AB垂直BD,AC垂直CD,AD,BC相交于点E,求证CE=BE.

AB=AC,AD=DART△ABD≌RT△ACD(HL)所以∠BAE=∠CAE,又AB=AC,∠BAE=∠CAE,AE=EA△ABE≌△ACE(SAS)即,BE=CE

已知平行四边形ABCD对角线AC=21,BE垂直于AC于E,且BE=5,AD=7,求AD与BC之间的距离

15用面积法做,平行四边形面积被对角线一分为二,两者相等,所以AC*BE=AD*x,所以,x=15

已知如图DE垂直于AB,DF垂直于AC,垂足分别为E,F,BD=CD,BE=CF 求证AD平分角B

证明:∵∠E=∠DFC=90°,BD=CD,BE=CF.∴Rt⊿DEB≌Rt⊿DFC(HL).∴DE=DF.故:AD平分∠BAC.同理可证:Rt⊿AED≌Rt⊿AFD(HL).∴AE=AF.∴AB+A

已知,如图,BE=CF,BF垂直于AC于F,CE垂直于AB于E,BF和CE交于点D,求证:

证明:∵BF⊥AC,CE⊥AB∴∠AEC=∠AFB=90,∠BFC=∠CEB=90∵BE=CF,∠BDE=∠CDF∴△BDE≌△CDF(AAS)∴DE=DF∵AD=AD∴△ADE≌△ADF(HL)∴∠