已知be垂直ac于e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:03:50
∵BF⊥ACCE⊥AB∴∠BED=∠AED=∠CFD=∠AFD∵∠EDB=∠CDF∠BED=∠CFDBE=CF∴△BED≌△CFD∴DE=DF∵DE=DFAD=AD∠AED=∠AFD∴△AED≌△AF
角ACE=18°角A-角ACB=36°BD平分角ABC角ABD=角CBD(角A+角ABD)-(角ACB+角CBD)=36°(角A+角ABD)+(角ACB+角CBD)=180°(三角形内角和)则(角AC
因为:AB=AC角A=60度所以:三角形ABC为等边三角形角A=角B=角C=60度因为:BE垂直于AC角BEC=90度角C=60度(已知)所以:角EBC=30度三角形BEC为30度角的直角三角形所以:
角dac=ebc角adb=adcad=bd所以fbd和adc全等所以fd=dcaf+dc=af+fd=ad=bd
因为AD垂直BC,所以,角ABD=角ADC=90度,角C+角CAD=90度.因为BE垂直AC,所以,角C+角CBE=90度,所以,角CAD=角CBE.又因为BD=AD,所以,三角形FBD全等于三角形C
因为ao平分∠bac,CD垂直AB于点D,BE垂直AC于点E.所以oe=od(角平分线定理)所以三角形aod全等与aoe,所以∠aoe=∠aod.所以由平角得到∠dob=∠eoc,再由全等定理得三角形
因为AF=BE所以AF-EF=BE-EF所以AE=BF又因为AC=BD且三角形ACE与三角形BDF都是直角三角形根据勾股定理可得CE=DF
AB、AD交于A,相交线不平行.原题可收回.
证明:在三角形ABC中,AB是直径,C是圆上的点所以角ACB=90,即BC垂直于ACOF垂直AC所以OF平行BC∵AB⊥CD∴CE=1/2CD=5√3cm.在直角△OCE中,OC=OB=x+5(cm)
角BAF被AC平分,且CF垂直AF,CE垂直AE,于是根据这条定理:角平分线上的一点向两条角的边引垂线,两垂线相等,所以CF=CE.又CE=CD,且角CEB=角CFD所以根据直角三角形全等定理,三角形
CD=BC在三角形ACF与ACE中,角1=角2,AC=AC,再加两个直角,两个三角形相似所以CF=CE,在三角形CDF与CEB中,又BE=DF,两个直角,两个三角形相似所以CD=BC
证明:(1)∠DAF=∠EAF;∠ADF=∠AEF=90度;AF=AF.∴⊿DAF≌ΔEAF(AAS),故AD=AE.(2)AD=AE(已证);∠ADC=∠AEB=90°(已知);∠DAC=∠EAB(
AD=CB,BE=DF,所以RT△ADF≌RT△CBE,所以∠DAF=∠BCE,∴AD//BC.
AB=AC,AD=DART△ABD≌RT△ACD(HL)所以∠BAE=∠CAE,又AB=AC,∠BAE=∠CAE,AE=EA△ABE≌△ACE(SAS)即,BE=CE
角C=30度,AB=10,AD=5,G为AB延长线上一点,求...
15用面积法做,平行四边形面积被对角线一分为二,两者相等,所以AC*BE=AD*x,所以,x=15
证明:∵∠E=∠DFC=90°,BD=CD,BE=CF.∴Rt⊿DEB≌Rt⊿DFC(HL).∴DE=DF.故:AD平分∠BAC.同理可证:Rt⊿AED≌Rt⊿AFD(HL).∴AE=AF.∴AB+A
证明:∵BF⊥AC,CE⊥AB∴∠AEC=∠AFB=90,∠BFC=∠CEB=90∵BE=CF,∠BDE=∠CDF∴△BDE≌△CDF(AAS)∴DE=DF∵AD=AD∴△ADE≌△ADF(HL)∴∠