9阶无向图G中
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:15:50
|V(G)|-|E(G)|=1即点数比边数多1.证明思路:数归即可.|V(G)|=1显然成立,若|V(G)|=k成立,当|V(G)|=k+1时必有一点度数为1将此点与连接此点的边删去,即证
n个顶点度数为d(xi)(1≤i≤n)则d(xi)可以取0,1,2...,n-1可以取n个不同的值若存在d(xi)=0则不可能存在d(xi)=nn个d(xi)取n-1个不同的值由鸽笼原理必有d(xm)
难题?你可能不知道基本定义吧.d(v1)=3,d(v2)=4,d(v3)=3,d(v4)=3,d(v5)=1,d(v6)=0,奇结点4个,偶结点2个.过程就是数出来的,把G画出来就能说明了.
用扩大路径法,随意选取一个点,每需和其他一个点连接需要至少一条边,因为他是连通图,所以至少有N-1条边,只有N-1条边的时候每条边都是桥所以可知他就是一棵树
是.无向树连通且无回路,不会包含K5或K3,3作为子图,所以它是平面图.
一幅有权值且没有方向的图.
首先要判断无向图中是否带有循环的.如果生成树是连通的,则去掉任何一条边都不连通.生成树是连通的,并且|E|=|V|-1.树中任何两点都由一个简单的通路连接.
对m用归纳法.再问:如何归纳?再答:当m=1时,图G有两种结构,一种是有两个顶点和一条关联这两个顶点的边构成,显然m=1,n=2.结论成立。另一种是由一条自回路构成,显然m=1,n=1.结论成立。假设
设连通图G有(n+1)个顶点,若每个顶点连出至少两条边,那么此时至少有n+1条边(任意图上所有顶点度数和等于边数的两倍),结论已经成立.否则,那么至少有一个顶点只连出一条边.不妨设为A,由于去掉这条边
首先证明G中有割点,则G不是汉密尔顿图,反证法,如果图G是汉密尔顿图,则必存在汉密尔顿圈(回路),即所有结点均在一个回路中,此时删除任意一个结点图G必连通,于是它的任何点均不是割点,矛盾,即有割点的图
无向图g是树当且仅当无向图g是无回路的连通图.
无向连通图奇点的个数k一定为偶数,因此要想把G变成无奇点的图,至少需要加k/2条边.
反证法.假设所有顶点的度数最多为2,则度数总和D≤2n≠2(n+1),与握手定理矛盾.
答案应该是B.5此题在于理解邻接矩阵的意思:是5×5矩阵,说明有5个顶点.aij=1意思是第i个顶点与第j个顶点之间有一条边.如a21=a21=1,说明第1个顶点与第2个顶点之间有一条边.数总的边数,
intCount(GraphG){intcount=0;for(v=0;v
#include<stdio.h>#include<stdlib.h>#include<conio.h>#include<malloc.h>#defin
G其实就是树.首先,如果G中每对顶点间具有唯一的通路,那么G当然是连通的.选取G的一个顶点,记为第1层顶点,所有和第一层顶点相邻的顶点记为第2层顶点,如此等等.主要到每个第n+1层的顶点都与一个第n层
在简单无向图G=中,如果V中的每个结点都与其余的结点邻接,则该图称为__正则图___;如果V有n个结点,那么他还是__n-1__度正则图.各顶点的度均相同的无向简单图称为正则图(regulargrap
选B,就1个连通分量.因为这个图本身就是连通图,所以是一个连通分量嘛~如果这个图不是连通的,那么它就至少有两个连通分量