已知fx在定义域上是偶函数 那么a等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:09:38
x>=0,f(x)=x(x-2)=x²-2x+1-1=(x-1)²-1,对称轴x=1,顶点(1,-1),开口向上.过(0,0)和(2,0).fx是定义在R上的偶函数:f(x)在x负
该偶函数区间0到正无穷上是单调增函数,那么在负无穷大到0上是单调减函数,且f(x)=f(-x),f(x)>f(1)=f(-1),那么x<-1或x>1.
f(x)=f(2-x)又因为f(x)是偶函数,所以:f(x)=f(-x);所以:f(-x)=f(2-x)即:f(x)=f(x+2)所以,f(x)是周期函数,最小正周期是2如果不懂,请Hi我,再问:f(
答:定义在R上的偶函数f(x)有:f(-x)=f(x)所以:f(-1)=f(1)=0因为:[xf'(x)-f(x)]/x^2
x=0,则f(-x)=(-x)^2-2(-x)-1=x^2+2x-1=f(x)(fx是定义在R上的偶函数)所以fx表达式为x≥0时,fx=x^2-2x-1x
图像法就好了f(x)=k当K>0时2个解当k=0时3个解当-4
因为是奇函数有f(-x)=-f(x)当x小于等于0的时候-x就大于等于0f(-x)=-f(x)=(-x)^2+2(-x)=x^2-2x所以在r上的表达式为:f(x)=-x^2-2x(x≤0)=x^2-
答:f(x)=4x^2-kx-2,x定义在[a-2,a]上f(x)是偶函数则有:区间[a-2,a]是关于原点对称的区间,a-2+a=0,a=1f(-x)=f(-x):f(-x)=4x^2+kx-2=f
解题思路:f(x)为偶函数,定义域关于原点对称,求m=-4/3,求f(x)的指数为2/3,x大于等于0,递增,奇偶性做图象解题过程:
取任意x1则-x1>-x2>0因为f(x)在(0,+∞)上是增函数所以f(-x1)>f(-x2)又因为f(x)是定义域是R的偶函数所以f(-x1)=f(x1),f(-x2)=f(x2)所以f(x1)>
因为有单调性所以ax+2的绝对值等于x-4的绝对值要绝对值是因为偶函数.得ax+2=x-4或者ax+2=4-x再因为f(0)只能等于f(0)所以把x=4带入得a*4+2=0得a=-1/2,x=4其实应
设x》0则-x《0所以f(-x)=x2-(-2X)=x2+2x=f(x)
已知函数f(x)=x^2+a若[f(x)+2]/(bx+1)是偶函数,在定义域上f(x)>=ax恒成立,求a的取值范围.设g(x)=[f(x)+2]/(bx+1)=(x^2+a+2)/(bx+1),则
f(x)=ax²+bx+3a+b是偶函数则定义域关于原点对称即4-a=a解得a=2f(-x)=2x²-bx+6+bf(x)=f(-x)所以b=-b;解得b=0f(x)=2x
证明:任取x10因为:fx在(0,到正无穷)上是减函数所以:f(-x1)
是指用”定义“证明么==任取x∈R则有f(-x)=2(-x)²-1=2x²-1=f(x)∴f(x)是偶函数
当x0时,-x0时,f(x)=-x-x^4
∵g(x)=f(x-1)∴g(-x)=f(-x-1)∵g(x)是奇函数∴g(x)=-g(-x)即f(x-1)=-f(-x-1)设y=x-1,则x=y+1带入上式得:f(y)=-f(-y-2)∴f(x)