已知xy为正实数,且x2 y2 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:42:46
设函数的定义域为(0,+∞),且对任意的正实数x,y,有f(xy)=f(x)+f(y)恒成立,已知f

题目好像有错啊当x>1,f(x)<0然后后面又冒出来f(2)=1这个不是自相矛盾嘛

已知x、y 为正实数 且2x+4y-xy=0 求x+y的最小值

∵2x+4y-xy=0∴y=2x/(x-4)x+y=2x/(x-4)+x=2+8/(x-4)+(x-4)+4=6+8/(x-4)+(x-4)≥6+4√2当且仅当8/(x-4)=(x-4)时,等号成立∴

已知x,y为正实数,且满足x^2+4y^2+xy=1,则x+2y的最大值为

∵x^2+4y^2+xy=1,∴﹙x+2y﹚²=1+3xy1-xy=x^2+4y^2≥4xy∴x+2y=√﹙1+3xy﹚xy≤1/5∴x+2y≤√﹙1+3/5﹚=2√10/5再问:  为什么

已知x、y为正实数,且2x+8y-xy=0,求x+y的最小值

我只知道你为什么错2x+8y>=8倍根号xy只有当2x=8y的时候才能取等号,即x=4y,而后面又用x+y>=2倍根号xy,相同的道理只有x=y的时候才能取等号,前后矛盾了只能帮到你这么多了

已知X、Y为正实数,且2X+8Y-XY=0,求X+Y的最小值.

若不限制X,Y的范围,则满足2X+8Y-XY=0的X+Y没有最小值.若限制X,Y>0,则满足2X+8Y-XY=0的X+Y最小值为18.整理2X+8Y-XY=0,可以得到(2-Y)(X+Y)+6Y+Y^

已知x.y为正实数,且2x+8y-xy=0求x+y的最小值(解答时应写文字说明,

有x,y大于0得2/y+8/x=1得x>8x+y=x+2/(1-8/x)=x+2+16/(x-8)=(x-8)+16/(x-8)+10>=2*根号[(x-8)*(16/(x-8))]+10=18既是当

已知x,y为正实数,且满足4x+3y=12,则xy的最大值为______.

因为:x,y为正实数∴4x+3y=12≥24x•3y=212xy,⇒12xy≤6⇒xy≤3.(当且仅当x=32,y=2时取等号.)所以:xy的最大值为3.故答案为:3.

已知xy都是正实数,且X+Y>2,求证1+X/Y

要证明的式子须是(x+1)/y1;若x>y,则(y+1)x

Y 已知x,y均为正实数,且2x+8y-xy=0,则x+y的最小值为?

可以设K=x+y,则得:y=K-x,代入已知得:x²-(K+6)x+8K=0即:△=[-(K+6)]²-4×8K≥0(K-2)(K-18)≥0·①因x、y均为正数,所以K=x+y>

已知x,y都是正实数,且x+y-3xy+5=0,则xy的最小值______.

由x+y-3xy+5=0得x+y+5=3xy.∴2xy+5≤x+y+5=3xy.∴3xy-2xy-5≥0,∴(xy+1)(3xy-5)≥0,∴xy≥53,即xy≥259,等号成立的条件是x=y.此时x

已知x.y为正实数,且2x+8y-xy=0.求x+y的最小值,

有x,y大于0得2/y+8/x=1得x>8x+y=x+2/(1-8/x)=x+2+16/(x-8)=(x-8)+16/(x-8)+10>=2*根号[(x-8)*(16/(x-8))]+10=18既是当

已知x,y为正实数,且满足关系式x^2-2x+4y^2=0,求xy的最大值.

令xy=py=p/xx^4-2x^3+4p^2=04p^2=2x^3-x^4=x^3(2-x)=27*(x/3)^3*(2-x)再问:27*(x/3)^3*(2-x)=4(abcd)^(1/4)x/3

已知x,y都是正实数,且x+y-3xy+5=0,求xy的最小值

再问:帅再问:谢了再答:过奖了

已知x、y、z均为正实数,且xy+yz+xz=4xyz,则x/yz+y/xz+z/xy的最小值为多少?

4x/yz+y/xz+z/xy=2(x平方+y平方+z平方)/2xyz>=2(xy+yz+xz)/2xyz>=4xyz/xyz>=4

已知x,y为正实数,且x+2y+xy=30,求xy最大值.尽可能用多种方法.

30-xy=x+2y因为x>0,y>0则30-xy=x+2y>=2√(x*2y)=2√2*√(xy)xy+2√2*√(xy)-300a²+2√2a-30

已知正实数xy满足lnx+lny=0,且k(x+2y)

正实数x,y满足Inx+Iny=0,∴xy=1,y=1/x,k(x+2y)≦x^2+4Y^2恒成立∴k0,则u>=2√2,k

已知x,y为正实数,且x+4y=1,则xy的最大值为(  )

∵x,y为正实数,且x+4y=1,∴1≥24xy,化为xy≤116,当且仅当x=4y=12时取等号.则xy的最大值为116.故选:C.

设x,y均为正实数,且 xy=x+y+8,则xy的最小值为?

设x,y均为正实数,且xy=x+y+8,则xy的最小值为?x>0,y>0,且xy=x+y+8xy=x+y+8≥2√xy+8xy-2√xy+8≥0(√xy+2)(√xy-4)≥0√xy≤-2====>x

已知x,y为正实数,且满足关系式x^2-2x+4y^2=0,求xy的最大值.令xy=p

以上省略4p²=2x³-x^4=x³(2-x)=(3·3·3)·(x/3)·(x/3)·(x/3)·(2-x)≤27·[(x/3+x/3+x/3+2-x)/4]^4(五元

为x,y正实数,且3x+2y=12,则xy的最大值?

3x*2y≤[(3X+2y)/2]²=36所以xy≤6{用a+b≥2根号(ab)的思想}