已知x大于0,y大于0,4x-xy y=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:53:11
已知x大于0y大于0且x分之一+y分之9等于2求x+y的最小值

x分之一+y分之9=2所以1/2(x分之一+y分之9)=1拿这个1乘以x+y得到1/2(1+9x/y+y/x+9)整理再利用基本不等式得到最小值为8

已知x大于0y大于0且x分之4+y分之9等于2求x+y的最小值.

4/x+9/y=2(4y+9x)/xy=24y+9x=2xy2xy>=2√(4y*9x)=12√xy2xy-12√xy>=02√xy(√xy-6)>=0√xy>=6或√xy=2√xy=2*6=12

已知x大于0y大于0且x+y大于2证明(1+x)/y和(1+x)/y中至少有一个小于2

你写错了吧,后面的式子有一个是〔1+y〕/x吧,这个用反证法,假设它们都大于等于2,自己写写,会和那个x+y大于2矛盾.所以假设不成立,就是至少有一个小于2.

已知x大于0,y大于0,且1/x+9/y=1,求x+y的最小值

答:基本不等式原理:a>0,b>0(√a-√b)^2>=0a-2√(ab)+b>=0a+b>=2√(ab)本题目中:x>0,y>0,9x/y>0,y/x>0设9x/y=a,y/x=b9x/y+y/x=

已知x大于0,Y大于0,且1/x+9/y=2,求x+y的最小值

x>0,y>0,依Cauchy不等式得2=1/x+9/y=1^2/x+3^2/y≥(1+3)^2/(x+y)∴x+y≥16/2=8.∴x=2,y=6时,所求最小值为:8.

已知实数X.Y满足{2x+y-2大于等于0,x-2y+4大于等于0,3x-y-3小于等于0},

做了给分不?再问:当然对了我再+20再答:�ȸ����һ��������Ⱦ�������������ֱ�ߵõ�һ�����������������������㣨0��2������1,0������2

已知x大于0,y大于0且8/x+2/y=1,求x+y的最小值

1=8/x+2/y>=(2根号2+根号2)^2/(x+y){柯西不等式分式形式}因为x+y>0所以x+y>=(2根号2+根号2)^2=8+2+8=18

已知x大于0,y大于0,且1/x加4/y等于1,求x加y最小值.

x+y=(x+y)(1/x+4/y)=1+y/x+4x/y+4=5+y/x+4x/y由均值不等式得y/x+4x/y大于等于4所以x+y大于等于5+4=9所以x加y最小值9

已知X大于0,Y大于0,且1/X+9/Y=3,求X+Y的最小值

1/X+9/Y=3,9/y=3-1/x=(3x-1)/xy=9x/(3x-1)>0,x>0,则3x-1>0X+Y=x+9x/(3x-1)=x+3+3/(3x-1)=(x-1/3)+3/(3x-1)+3

已知x大于0,y小于0,z大于0,且|x|大于|y|,|y|小于|z|,化简|x+z|+|y+z|-|x+y|

已知x>0,y<0,z>0,且|x|大于|y|,|y|小于|z|,化简|x+z|+|y+z|-|x+y||x+z|+|y+z|-|x+y|=x+z+y+z-x-y=2z

已知变量x,y满足约束条件{x+4y-13小于等于0,2y-x+1大于等于0.x+y-4大于等于0,且

再问:中么算的,我有答案的再答:计算答案为A。抱歉,我当时是为了多答几道题,没有仔细做。首先,画出了三个函数的图像,符合题中要求的x,y取值范围在第一象限。那么此时z有最小值,只有在x取得最小值,my

已知x大于0,y大于0,且x加4y等于1,求xy的最大值

最大值为八分之一再问:确定?再答:嗯

已知2x+y=1,x大于0,y大于0 xy的求最大值

(2x)*(y)小于等于(2x+y)/2的平方=1/4等号成立当且仅当2x=y即x=1/4,y=1/2所以xy小于等于1/8错解法错的原因在于均值不等式应用时,两数之和为定值才能像错解中那样用

已知xy大于0求证xy+1/xy+y/x+x/y大于等于4

xy+1/xy+y/x+x/y=[(xy)^2+1+x^2+y^2]/(xy)=[(xy)^2-2xy+1+x^2-2xy+y^2+4xy]/(xy)=[(xy-1)^2+(x-y)^2+4xy]/(

已知x大于0,函数Y=X分之4+X的最小值

y=(4+x)/xy=4/x+1为平移的倒数函数,当x>0时,y=4/x的最小值为0,所以y=4/x+1的最小值为1============另有excel作图结果如下:试试吧,但愿能够帮助您!

已知x大于0,y大于0,x+y=4,求xy的最大值

xy≦(x^2+y^2)/2,当x=y时等号成立,这时xy取最大值;因为x+y=4,所以当x=y时,x=y=2,所以xy的最大值为(x^2+y^2)/2=4.再问:其他方法呢?再答:(1)x+y=4,

已知x大于0,函数y=2-3x-4/x的最大值,

y=2-3x-4/x=2-(3x+4/x)x>0,所以由均值不等式3x+4/x>=2√(3x*4/x)=2√12=4√3当3x=4/x时取等号x^2=4/3,有x>0的解3x+4/x>=4√3=>2-