已知x服从泊松分布则x的概率为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:47:53
已知离散型随机变量X服从参数为λ的泊松分布 若数学期望E(5X-1)=9 则参数λ=?

E(5X-1)=5EX-1=9->EX=λ=2期望的基本性质,和泊松分布的期望公式而已.

设随机变量X服从参数为3的泊松分布,则X平方数学期望,

依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;

已知随机变量X服从0-1分布,X取0的概率是取1的概率的3倍,求X的概率分布及分布函数!

因为服从0-1分布,所以变量只有0和1,分别设0和1的概率是P(0)P(1)所以:P(0)+P(1)=1P(0)=3P(1)解得:P(0)=0.75P(1)=0.25所以概率分布是:010.750.2

《概率论题目求解》已知随机变量X服从自由度为n的t分布,则随机变量X方的服从的分布是?...

明显是F分布,而且是F(1,3).关于F分布你百度百科查一下就知道了.而t分布的话,比如自由度是3,他的分子是正态分布,分母是根号下的Y除以自由度3,其中Y是服从卡方分布的随机变量.所以平方后,分子是

已知离散型随机变量X服从参数为2的泊松分布,Y=12-3X,则D(Y)= .

对于方差,我们有以下的性质:D(aX+b)=a^2D(X)所以:D(Y)=D(-3X+12)=(-3)^2D(X)=9D(X)因为离散型随机变量X服从参数为2的泊松分布而参数为λ的泊松分布的方差为λ所

已知离散型随机变量X服从参数为3的泊松分布,则概率P{X=0}=?

你是不明白分母的那个k!0!的值在数学上通常是约定为1的,因此代入公式后的答案是P{X=0}=e^-3.

已知随机变量X服从参数为2的泊松分布,随机变量Z=3X-2,则E (Z)等于多少,

E(Z)=E(3X-2)=3·E(X)-2,因为X服从参数为2的泊松分布,所以E(X)=2,所以E(Z)=3×2-2=4.

概率统计:已知随机变量X服从自由度为3的t分布,则X的平方服从什么分布?

楼上真是扯淡啊.明显是F分布,而且是F(1,3).关于F分布你百度百科查一下就知道了.而t分布的话,比如自由度是3,他的分子是正态分布,分母是根号下的Y除以自由度3,其中Y是服从卡方分布的随机变量.所

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=2/e²,则λ=?

λ=2由泊松分布密度函数可知:P{X=1}=e^(-λ)*λ=2/e²,可得λ=2.

随机变量X服从参数为1的泊松分布,则E(X²)=____

P(1),所以E(X)=1,D(X)=1,又因D(X)=E(X²)-E²(X),所以E(X²)=D(X)+E²(X)=2

设X和Y为独立随机变量,同服从参数为p的几何分布,计算已知X+Y 的条件下,X的条件概率.

P(X=x|X+Y=z)=P(X=x,Y=z-x)/P(X+Y=z)=(1-p)^(x-1)p(1-p)^(z-x-1)p/P(X+Y=z)再问:没有错,但是没有写完啊……P(X+Y=z)=?(考虑卷

已知随机变量x服从参数为2的泊松分布则E(X2)=

因为$X\simP(2)$,所以,$\E{X}=2$,$\Var{X}=2$.所以$\E{X^2}=\Var{X}+\E{X}^2=2+2^2=6$,建议好好看看书上的随机变量数字特征这一章,因为$\

设随机变量X服从参数为4的泊松分布,则DX =____________.

泊松分布的期望Ex=λ=4,Dx=λ=4PS:泊松分布式(λ^k)/k!*e(-λ)

设X服从参数为1的泊松分布,则P(X>1)

楼上的答案似乎不对P(X>1)=1-P(X=1)-P(X=0)=1-e^(-1)-e^(-1)-=1-2/e=0.26424

设X服从泊松分布,且期望EX=5,写出其概率分布律

泊松分布P(X=k)=e^(-λ)*λ^k/k!期望和方差均为λEX=λ=5所以P(X=k)=e^(-5)*5^k/k

x服从0-1分布,且它取0的概率为1概率的3倍,则它0的概率为

由于x服从0-1分布,可假设取0的概率为a,则1的概率为(1-a),知a/(1-a)=3,解得a=3/4=0.75,所以取零的概率为0.75

求概率统计大神设随机变量X服从参数为λ的泊松分布,求E(X+1)^-1

limn->无穷Σ(x=0~n)e^-λ(λ^x/x!(x+1))=[(e^-λ)/λ]{Σ(x=0~n)λ^(x+1)/(x+1)!}={(e^-λ)/λ}(e^λ-1)={1-e^(-λ)}/λ