已知x服从[0,1]上的均匀分布求Y=3X 1的概率密度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:34:58
设随机变量X,Y相互独立,且服从[0,1]上的均匀分布,求X+Y的概率密度.

不太清楚你的意思,是不知道积分区域怎么出来的?还是不知道怎么积分?其实就是左右两块区域求积分和,见下图再问:不好意思没说清楚,是不知道怎么积分的再答:就是图中黑色区域,左边矩形和右边梯形的积分和。事实

已知(X,Y)服从G={(x,y):0≤x≤2,0≤y≤1}上均匀分布,求Z=X/Y的分布函数和密度函数

直接用公式就行,难点在于被积函数的区域中 dy的范围;0≤y≤1与y≤2/z(第二个不等式由Z=X/Y得x=yz代入0≤x≤2得到的)由这两个不等式在(z,y)平面上画出图形,就会得到dy的

已知随机变量X分布函数F(x)是严格单调的连续函数,证明 Y=F(x)服从(0,1)上的均匀公布?

证明:Fy(y)=P{Y再问:F(F^-1(y))=y?为什么可以直接等于y?还有怎么就可以得到结论了呢?能再说明一下吗?再答:函数f(x)的反函数是f^-1(x),这不是f(x)的-1次方,是反函数

概率论:设随机变量X服从区间[0,5]上的均匀分布,Y服从参数为3的指数分布,且X与Y相互独立,求E(XY)

由随机变量X服从区间[0,5]上的均匀分布,得出E(X)=5/2  由Y服从参数为3的指数分布,得出E(Y)=3  由X与Y相互独立,知E(XY)=E(X)×E(Y)=15/2再问:5/2的/是乘的意

已知随机变量X与Y相互独立,均服从【0,1】上的均匀分布,求Z=min{x,y}的概率密度

F(z)=1-(1-Fx(z))(1-Fy(z))=1-(1-z)^2(0再问:能不能讲讲详细思路?再答:书上有公式,多维随机变量及其分布这一章,两个随机变量的函数分布这一节(0,1)上的均匀分布Fx

假设随机变量X服从参数为2的指数分布,证明:随机变量Y=1-e^(-2X)在区间(0,1)上服从均匀分布.

事实上,任意随机变量的分布函数(CDF)均服从(0,1)上均匀分布. 补充.Y就是X的累积分布函数,累积分布函数的取值范围只能是(0,1).

已知两个随机变量X,Y相互独立且服从0,1上的均匀分布,求X-Y和X的联合密度函数

设Z=X-Y当X=x时,Z在(x-1,x)上均匀分布fZ|X(z|x)=1.z属于(x-1,x),x属于(0,1)其他为0f(z,x)=fZ|X(z|x)f(x)=1,z属于(x-1,x),x属于(0

1、已知随机变量X服从[2,6]上的均匀分布,则P{3

所以P{3再问:答案是EX吗?再答:嗯啊,第二个题目再问:第一题呢谢谢再答:P{3

概率论,X,Y相互独立,且都服从[0,1]上的均匀分布

选AA选项:既然xy相互独立且均匀分布,那么(x,y)也服从区域[0,1]的均匀分布就好比你用铅笔在[0,1]这条直线上随意划点和你在边长为1的正方形内随意划点,他们都是均匀分布的B选项明显不对,当x

X与Y独立,且X服从(0,1)上的均匀分布,Y服从参数为1 的指数分布,求Z=X+Y的概率密度?

有卷积公式啊,fz(z)=[fx(Z-Y)fy(y)dy其中[表示积分号,积分区域是整个定义域对于这个题,代入上式fz(z)=[1*e的-y次方dy积分区域是0到1,积分出来等于1,在其他范围内是0,

X与Y独立,且X服从(0,1)上的均匀分布,Y服从参数为1 的指数分布,求P{X=min(X,Y)}

令Z=min(X,Y),则:P{Z=min(X,Y)>z}=P{X>z,Y>z}=P{X>z}*P{Y>z}易知:P{X>z}=1-z(0==0)所以:P{Z=min(X,Y)>z}=[1-z]*[1

随机变量X的数学期望E(X)是平均值吗?它是怎样的平均值?设X服从[a,b]上的均匀分 布,则X的数学期望E(X)是多少

离散型随机变量的一切可能的取值xi与对应的概率Pi(=xi)之积的和称为该离散型随机变量的数学期望.这是概念.随机变量X是指离散型的,设X的可能值有N个,则E(X)=求和(Xn/N)=求和(Xn)/N

一商店经销某种商品,每周进货的数量X与顾客对该种商品的需求量Y是相互独立的随机变量,且都服从区间[10,20]上的均匀分

设Z表示此商店每周所得利润,则:Z=1000Y,      Y≤X1000X+500(Y−X)=500(X+Y),  Y

设随机变量x服从【0,1】上均匀分布,求Y=e^x的概率密度!

FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0

已知随机变量X服从在区间(0,1)上的均匀分布,Y=2X+1,求Y的概率密度函数.

由题,设Y的概率密度为fY(y),分布函数为FY(y),由于X在区间(0,1)上的均匀分布∴Y=2X+1∈(1,3)∴对于任意的y∈(1,3),有FY(y)=P{Y≤y}=P{2X+1≤y}=P{X≤