已知△ABC和△DEF中,AB=DE,AC=DF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:06:37
已知在△ABC与△DEF中,AM,DN分别是BC和EF上的中线,且AB/DE=AM/DN=BC/EF,求证△ABC与△DEF相似证明:∵M和N分别为BC和EF的中点,∴BC/EF=2BM/2EN=BM
证明:∵AF=DC,∴AF-CF=DC-CF,即AC=DF;在△ABC和△DEF中AC=DFAB=DEBC=EF∴△ABC≌△DEF(SSS).
证明:∵在△ABC和△DEF中,AB=DE,AC=DF,∠A=∠D(已知)∴△ABC≌△DEF(三角形全等定理.边角边)
延长AM到P,使MP=AM,连接BP,延长DN到Q,使QN=DN,连接EQ,∵BM=CM,∠ANC=∠BMP,∴ΔAMC≌ΔPMB,∴AC=BP,∠MAC=∠P,同理DF=EQ,∠NDF=∠Q,∵AB
①关系为相等或是互补当两脚同时为锐角或是钝角时相等一个为锐角一个为钝角时互补因为:△ABM和△DEM全等(斜边直角边定理)第二个没图就不做回答了
相等证明:∵AB∥DE,BC∥EF∴四边形FBDE是平行四边形∴∠ABC=∠DEF
∠ABC=∠DEF∵AM⊥BC于M,DN⊥EF于N所以∠AMB=∠DNE=90°又∵AB=DE,AM=DN∴△ABM≌△DEN(HL)∴∠ABC=∠DEF
你没有把△ABC和△DEF的图传上来,做不了.
∵DE//AB,且∠DOE=∠AOB∴△DOE∽△AOB所以DE/AB=OE/OB同理可证FE/CB=OE/OB∴DE/AB=FE/CB又∵∠DEF=∠ABC(平行证明∠DEO=∠ABO和∠OEF=∠
①∵AM、DN分别是△ABC与△DEF边上的高,∴∠AMB=∠DNE=90°,又∵AB=DE,AM=DN,∴△ABM≌△DEN(HL),∴可得∠ABC=∠DEF.②∵AB=DE,AM=DN,∴△ABM
证明:∵AF=DC,∴AF-CF=DC-CF,∴AC=DF,在△ABC与△DEF中AB=DEAC=DFBC=EF,∴△ABC≌△DEF(SSS).
证明:∵在△ABC和△DEF中AB=DE(已知)∠A=∠D(已知)AC=DF(已知)∴△ABC≌△DEF(SAS)
证明:∵∠1=180-(∠B+∠BED)∠2=180-(∠DEF+∠BED)∠B=∠DEF∴∠1=∠2∵BD=CE∴△BDE和△CEF是全等三角形
如图所示:△DEF即为所求.再问:???
因为:D,E,F分别是AB,BC,AC的中点所以:每条中位线都底边的一半所以:,△ABC的周长是△DEF的周长的2倍又因为:△ABC的周长与△DEF的周长的和等于18厘米所以:△ABC的周长是18×2
第一问证明可以利用三角形的边角公式来证明,列出式子用已知条件来表示AC和DF从而可以得到AC与DF是相等的;第一问做出来了就不难得出第二问的答案了,第二问是成立的
如图所示,d、e、f分别为ab、bc、ac的中点,所以df∥bc,所以△adf和△abc是相似三角形,所以df:bc=ad:ab,即df:bc=1/2,所以df=bc/2,同理,de=ac/2,ef=
(1)若以∠ACB=∠DFE得出△ABC≡△DEF,依据是AAS角、角、边(2)若以BC=EF得出△ABC≡△DEF,依据是SAS边角边(3)若以∠A=∠D得出△ABC≡△DEF,依据是ASA角边角(
利用中位线定理,DF=AB/2,DE=AC/2,EF=AB/2.又因为:(AB+AC+BC)+(DF+DE+EF)=18(AB+AC+BC)+(AB/2+AC/2+AB/2)=18(AB+AC+BC)
证明:∵BC=EF,AM是△ABC的中线,DN是△DEF的中线,∴BM=EN,在△ABM和△DEN中AB=DEAM=DNBM=EN∴△ABM≌△DEN,∴∠B=∠E,在△ABC和△DEF中AB=DE∠