已知一元二次方程x² bx c=0的两个根为x1=1,x2=-2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:44:57
(1)关于x的一元二次方程x²+3x+m=0有两个不相等的实数根的条件是△=3²-4×1×m>0得到m<9/4(2)设x1,x2是(1)中所得的两个根,由求根公式有:x1=[-3-
(1)∵方程x2-2x+m=0有两个实数根,∴△=(-2)2-4m≥0,解得m≤1;(2)由两根关系可知,x1+x2=2,x1•x2=m,解方程组x1+x2=2x1+3x2=3,解得x1=32x2=1
1)∵Δ=36+4k²﹥0,∴方程有两个不相等的实数根.2)∵x1,x2为方程的两个实数根.∴由韦达定理得:x1+x2=6,又x1+2x2=14解方程组得x1=-2,x2=8.
(X-3)/(3X²-6X)/(X-2)/(X²-9)=1/3X(X+3)=1/3*(X²+3X)二元一次方程X²+3X-1=0,所以X²+3X=1,
http://zhidao.baidu.com/question/583189708.html
x1x2=m²=1;m=±1;(2)x1+x2=1-2m;x1x2=m²;(x1-x2)²=(x1+x2)²-4x1x2=(1-2m)²-4m
²-4ac=(a+2)²-8a=a²+4a+4-8a=a²-4a+4=(a-2)²>=0∴方程总有两个不相等的实数根当a=1时x²-3x+2
(1)当m=3时x²+2x+3=0(x+1)²-1+3=0(x+1)²=-2因为x+1>=0所以m=3无解(2)当m=-3时x²+2x-3=0(x-1)(x+3
m=3判别式△=2²-4m
再答:请及时采纳,谢谢
(x1+x2)²-(x1x2)²=0根据韦达定理m²=16∵有两个不同的实数根∴△>0即m=-4
将x=-3代入原方程,得16-m=0,故m=16 (2)方程x²-2x-m+1=0有两个不相等的实数根,则判别式为:√(2²+4m-4)>0→2√m>0,于是,m>0方程x
问题是:.若方程x的平方-2x-m+1=0有两个不相等的实数根,试判断另一个关于x的一元二此方程x的平方-(m-2)x+1-2m=0的根的情况?
(1)把x=1代入,得2+4+m=0∴m=-6把m=-6代入,得2x²+4x-6=0∴(x-1)(x+3)=0∴X1=1X2=-3第二题没看懂.
x²+4x+m-1=0x1+x2=-4x1x2=m-1(x1)²+(x2)²=(x1+x2)²-2x1x2=16-2(m-1)=18-2m18-2m-(m-1)
假设x1>x2x1+x2=8x1²-x2²=(x1+x2)(x1-x2)=16所以x1-x2=2x1x2=m(x1-x2)²=(x1+x2)²-4x1x24=6
1b*b-4*a*c>04-4*m>0即m<12用维达定理X1*x2=c/a,x1+x2=-b/a你条件好像给错了
X平方2X+m=0?再问:打错了是X平方-2X+m=0再答:(-2)²-4m>0m
(1)½x²+kx+k-½=0加一个1/2△=k²-4×1/2×(k-1/2)=k²-2k+1=(k-1)²>=0∴方程总有两个实数根(2)
解题思路:一元二次方程解题过程:解:∵方程x2﹣2x+m=0有两个实数根,∴△=(﹣2)2﹣4m≥0,解得:m≤1;最终答案:略