已知一平面简谐波的表达式,求振动方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:35:17
是,在零位移处,动能最大,势能最大,在最大位移处,动能为零,势能为零
由图可知波长为20,振幅是0.02,由于波速是5,故周期是4s,故角频率是2π/4=π/2,由于t=3s时x=0在负向位移最大处,且此波沿x轴正向传播,故可知t=0时x=0处质点在原点处且沿y轴正向运
x=0.24cos(wt+ψ)当t=0时,x=-0.12∴0.24cosψ=-0.12cosψ=-0.5ψ=(2π)/3或(4π)/3所以初相位为(2π)/3或(4π)/3
(1)y=0.04cos[2π(5t+x/0.4)-3/2π](2)y=0.04cosπ(2t/5+1/2)
选D,在从最大位移处回到平衡位置后,媒质质元的位移为0,速度最大,因此动能最大,弹性势能为零
t=0,x=0.1直接代入即可2/3pai
自我觉得质点本身无能量,不过此质点与临近质点组成系统间有类似弹性势能的能量,且等于平衡位置时的动能
波动的过程是能量的传播过程.由于波的传播,介质中质点作振动,因此具有动能;与此同时,任何一个小体积元内,都发生压缩或伸张形变(纵波)或切形变(横波),因此具有形变势能在平面简谐波中,质元的动能和势能同
(1)将t=5带入波动方程:位移y=5cos(20-4x)cm.(2)将x=4cm带入波动方程:震动规律是:位移随时间变化的波动方程是:y=5cos(3t-10).(3)波速是波长除以周期,波长是两个
1.5πrad再问:A到B不是相差3/4个π吗再答:?怎么会是3π/4呢?是3/4个周期,一个周期是2π,所以是2π×3/4=3π/2rad
我想lz的理解有点偏差,薛定谔方程是希尔伯特空间中的复参量方程.波函数是时间和位置的函数.当哈密顿算符不含时间时,波函数可以分解成一个位置函数和时间函数的乘积.初等量子力学中一般研究的是这个位置的函数
1、在t=1/2时刻,y=4.0×10^-2cos(πt-(π/2))=y=4.0×10^-2cos0º=4.0×10^-2m,该点处于最大位移处,速度为0.2、周期T=2s①若A在前B在后
这道题可以用旋转矢量法来求首先令两个波的方程中的x=λ/4,得到改点处的振动方程,然后在以振幅为半径,矢量起点为圆心的圆中,规定一个正方向,然后,找出各自振动方程的初相位,画好后,将两个矢量利用平行四
由振动图像知初相为-π/2而反射波在O点的相位落后2L的距离加一个半波,即反射波初相为φ=-π/2-2π*2L/d-π=π/2-4πL/d反射波往x负方向传播,故y=Acos(ωt+2πx/d+φ)=
求振动方程,二次对T求导,代入T再问:没听懂呵呵不是只有振动方程才二次求导吗?这个波动方程怎么转换为振动方程啊?再答:设振动方程的标准式,由波动方程可得点,代入可解振动方程..........
这个文档的六七页就是解析,很详细哦!
波长为0.4m;振幅为0.04m,v=λff=v/λ=0.08/0.4=0.2HzT=1/f=5s角频率ω=2πf=0.4π,初相位为-πy=0.04sin(0.4πt-π)或者初相位为πy=0.04
假设时间由t=0经过Δt(Δt很小)后,即t=Δt对质点P,y=Asin5πt=y=Asin5πΔt其中,由于Δt很小且为正值,sin5πΔt>0,所以y的正负与A相同当A>0时,y>0,说明P在t=