已知一条直线过p(2a,3b)和p(4a,6b),并且a≠0,求此直线的斜率
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 01:56:44
设直线方程为y=kx+b点P(2,-3),所以2k+b=-3y=kx+b与直线2X-Y-1=0交于点A,A[(b+1)/(2-k),(b^2+k)/(2-k)]y=kx+b与直线X+2Y-4=0交于点
使过空间中的任意一点p一定能做一条直线与直线a和直线b均相交,那么这样的点肯定在a,b两直线任意两点连线上,在ab上各任取一点这样构成的直线实际上形成了一个由中间向两端扩展的立体空间,我不会作图把图形
x^2+y^2=4是圆心为原点,半径为2的圆.过点P(1,0)的直线与圆相交于A,B两点,则|AB|的最大值为圆的直径,等于4.再问:不是椭圆吗???化成x2/2+y2/4=1!再答:那题目就是,2x
k=(6a-3b)/(4b-2a)
假设能,A(x1,y1),B(x2,y2),于是x1^2-y1^2/2=1,x2^2-y2^2/2=1,相减:x1^2-x2^2=(y1^2-y2^2)2即2(x1+x2)(x1-x2)=(y1+y2
答案(-∞,-2-√2)∪(2,+∞)
答:抛物线y^2=2px焦点F(p/2,0),准线x=-p/2
椭圆x²/16+y²/4=1①的长轴右顶点为A(4,0),短轴上顶点为B(0,2),AB的中点为P(2,1),过P的直线:y=k(x-2)+1,代入①,x^2+4(kx+1-2k)
设有一点A在双曲线上,坐标为(x,y),x^2-y^2/2=1与P为对称点B的坐标为:(2-x,2-y),设B也在曲线上,则:(2-x)^2-(2-y)^2/2=14-4x+x^2-2+2y-y^2/
假设存在这样一条直线,设为y=kx+b,A,B两点的横坐标分别设为X1和X2∵直线过(1,1)∴k+b=1,即b=1-k则直线为y=kx+1-k将直线方程与抛物线方程联立解方程组得2x^2-(kx+1
设有一点A在双曲线上,坐标为(x,y),x^2-y^2/2=1与P为对称点B的坐标为:(2-x,2-y),设B也在曲线上,则:(2-x)^2-(2-y)^2/2=14-4x+x^2-2+2y-y^2/
分别设A点B点为X1X2又因为两点都在双曲线上所以符合方程代入方程得到两个双曲线方程两式相减就会得到一个新方程又根据p为AB中点又会得到一个方程两式联力就能得到AB直线的斜率了接着就能求出方程了
∵A、B两点到m的距离相等∴①m过AB中点(过AB作m垂线,由垂线平行且相等可推得,证明略)②m与AB平行,斜率相等情况①设M(x1,y1)为AB中点,则x1=(1-3)/2=-1,y1=(2-2)/
设直线方程为y=k(x-2)+1,设A(x1,y1),B(x2,y2),因为P平分AB,所以P是AB中点,所以x1+x2=4,y1+y2=2,因为A,B在椭圆上,所以(x1)^2/16+(y1)^2/
因为是直线,所以我们可以设直线解析式为y=kx+b设直线解析式为y=kx+b将P1(2a,3b),P2(4b,6a)代入∴3b=2ak+b①6a=4bk+b②①-②:3b-6a=(2a-4b)kk=(
椭圆P(2.0)F(1.0)直线斜率显然存在设y=k(x-1)当k=0的时候,F代入方程那么Y=3/2.面积1*3/2/1/2*2=1.5所以直线为x=1当k不等于0的时候联立y=k(x-1)和x^2
如图PC为过点P的直线A的垂线由于P在B上,所以没有垂线